Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = poleward drift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 48949 KB  
Article
Effects of the October 2024 Storm over the Global Ionosphere
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses and Sharad C. Tripathi
Remote Sens. 2025, 17(13), 2329; https://doi.org/10.3390/rs17132329 - 7 Jul 2025
Cited by 2 | Viewed by 2265
Abstract
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres [...] Read more.
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres on the dayside, primarily driven by equatorward thermospheric winds and prompt penetration electric fields (PPEFs). However, this uplift did not correspond with increases in foF2 due to enhanced molecular nitrogen-promoting recombination in sunlit regions and the F2 peak rising beyond the COSMIC—2 detection range. In contrast, in the Southern Hemisphere nightside ionosphere exhibited pronounced Ne depletion and low hmF2 values, attributed to G-conditions and thermospheric composition changes caused by storm-time circulation. Strong vertical plasma drifts exceeding 100 m/s were observed during both the main and recovery phases, particularly over Ascension Island, driven initially by southward IMF—Bz-induced PPEFs and later by disturbance dynamo electric fields (DDEFs) as IMF—Bz turned northward. Swarm data revealed a poleward expansion of the Equatorial Ionization Anomaly (EIA), with more pronounced effects in the Southern Hemisphere due to seasonal and longitudinal variations in ionospheric conductivity. Additionally, the storm excited Large-Scale Travelling Ionospheric Disturbances (LSTIDs), triggered by thermospheric perturbations and electrodynamic drivers, including PPEFs and DDEFs. These disturbances, along with enhanced westward thermospheric wind and altered zonal electric fields, modulated ionospheric irregularity intensity and distribution. The emergence of anti-Sq current systems further disrupted quiet-time electrodynamics, promoting global LSTID activity. Furthermore, storm-induced equatorial plasma bubbles (EPBs) were observed over Southeast Asia, initiated by enhanced PPEFs during the main phase and suppressed during recovery, consistent with super EPB development mechanisms. Full article
Show Figures

Figure 1

24 pages, 48751 KB  
Article
Effects of the Mother’s Day Superstorm (10–11 May 2024) over the Global Ionosphere
by Krishnendu Sekhar Paul, Mefe Moses, Haris Haralambous and Christina Oikonomou
Remote Sens. 2025, 17(5), 859; https://doi.org/10.3390/rs17050859 - 28 Feb 2025
Cited by 2 | Viewed by 1435
Abstract
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio [...] Read more.
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio Occultation (RO) data indicated an increase in the F2 layer maximum critical frequency (foF2) over midlatitude dayside regions, which was accompanied by a significant F-region uplift (hmF2 increase) on a global scale, even on the nightside during the main and recovery phases. At the same time, a decrease in foF2 was observed on the nightside. High southeastward and vertical drift velocities were observed in the nightside sector of the northern hemisphere with the dayside sector exhibiting upward and southwestward-to-northwestward drifts during the main and recovery phases of the storm. An intense upward drift (~170 m/s) in the southern hemisphere was registered with the poleward expansion of the Equatorial Ionization Anomaly (EIA) during the main phase. Swarm A data highlighted the EIA expansion from ~45°N to 60°S during the dayside main phase and from ~30°N to 40°S on the nightside during recovery. Full article
(This article belongs to the Special Issue Application of GNSS Remote Sensing in Ionosphere Monitoring)
Show Figures

Graphical abstract

13 pages, 3834 KB  
Technical Note
Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm
by Changzhi Zhai, Shenquan Tang, Wenjie Peng, Xiaoyun Cheng and Dunyong Zheng
Remote Sens. 2023, 15(1), 111; https://doi.org/10.3390/rs15010111 - 25 Dec 2022
Cited by 17 | Viewed by 2333
Abstract
During geomagnetic storms, ionospheric storms can be driven by several mechanisms. Observations performed using ground- and space-based instruments were used to reveal the driver of the positive ionospheric storm over the South American sector during the 4 November 2021 geomagnetic storm. The positive [...] Read more.
During geomagnetic storms, ionospheric storms can be driven by several mechanisms. Observations performed using ground- and space-based instruments were used to reveal the driver of the positive ionospheric storm over the South American sector during the 4 November 2021 geomagnetic storm. The positive storm appeared from 10:30 UT to 18:00 UT and covered the region from 40°S to 20°N. The maximum magnitudes of TEC (Total Electron Content) enhancement and relative TEC enhancement were about 20 TECU and 100%, respectively. Defense Meteorological Satellite Program (DMSP) also observed a significant electron density increase over South America and the eastern Pacific Ocean. In the meantime, about 50% ∑O/N2 enhancement was observed by the Global-scale Observations of the Limb and Disk (GOLD) satellite at low latitudes. Ionosonde observations (AS00Q and CAJ2M) registered an ~80 km uplift in F2 peak height (HmF2) and a prominent F2 peak electron density (NmF2) increase ~3 h after the uplift. A prominent enhancement in the cross-polar cap potential (CPCP) in the southern hemisphere was also observed by Super Dual Auroral Radar Network (SuperDARN) one hour earlier than the HmF2 uplift. Measurements of the Ionospheric Connection Explorer satellite (ICON) showed that the outward E×B drift was enhanced significantly and that the horizontal ion drift was poleward. According to the ICON ion drift observations, the HmF2 uplift was caused by an electric field rather than equatorward neutral wind. We propose that the enhanced eastward electric field dominated the positive ionospheric storm and that the thermospheric composition variation may have also contributed. Full article
Show Figures

Figure 1

26 pages, 4860 KB  
Article
Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017
by Ram Kumar Vankadara, Sampad Kumar Panda, Christine Amory-Mazaudier, Rolland Fleury, Venkata Ratnam Devanaboyina, Tarun Kumar Pant, Punyawi Jamjareegulgarn, Mohd Anul Haq, Daniel Okoh and Gopi Krishna Seemala
Remote Sens. 2022, 14(3), 652; https://doi.org/10.3390/rs14030652 - 29 Jan 2022
Cited by 47 | Viewed by 5314
Abstract
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a [...] Read more.
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 September 2017 that are associated with the strongest and consecutive solar flares in the 24th solar cycle. The night-time influence of partial ring current signatures in ASYH and the daytime influence of the disturbances in the ionospheric E region electric currents (Diono) are highlighted during the event. The total electron content (TEC) from the latitudinal GNSS observables indicate a perturbed equatorial ionization anomaly (EIA) condition on 7 September, due to a sequence of M-class solar flares and associated prompt penetration electric fields (PPEFs), whereas the suppressed EIA on 8 September with an inverted equatorial electrojet (EEJ) suggests the driving disturbance dynamo electric current (Ddyn) corresponding to disturbance dynamo electric fields (DDEFs) penetration in the E region and additional contributions from the plausible storm-time compositional changes (O/N2) in the F-region. The concurrent analysis of the Diono and EEJ strengths help in identifying the pre-reversal effect (PRE) condition to seed the development of equatorial plasma bubbles (EPBs) during the local evening sector on the storm day. The severity of ionospheric irregularities at different latitudes is revealed from the occurrence rate of the rate of change of TEC index (ROTI) variations. Further, the investigations of the hourly maximum absolute error (MAE) and root mean square error (RMSE) of ROTI from the reference quiet days’ levels and the timestamps of ROTI peak magnitudes substantiate the severity, latitudinal time lag in the peak of irregularity, and poleward expansion of EPBs and associated scintillations. The key findings from this study strengthen the understanding of evolution and the drifting characteristics of plasma irregularities over the Indian low latitudes. Full article
Show Figures

Figure 1

Back to TopTop