Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = platonic helix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3106 KiB  
Article
Calculating the Segmented Helix Formed by Repetitions of Identical Subunits thereby Generating a Zoo of Platonic Helices
by Robert L. Read
Mathematics 2022, 10(14), 2533; https://doi.org/10.3390/math10142533 - 21 Jul 2022
Cited by 1 | Viewed by 2288
Abstract
Eric Lord has observed: “In nature, helical structures arise when identical structural subunits combine sequentially, the orientational and translational relation between each unit and its predecessor remaining constant.” This paper proves Lord’s observation. Constant-time algorithms are given for the segmented helix generated from [...] Read more.
Eric Lord has observed: “In nature, helical structures arise when identical structural subunits combine sequentially, the orientational and translational relation between each unit and its predecessor remaining constant.” This paper proves Lord’s observation. Constant-time algorithms are given for the segmented helix generated from the intrinsic properties of a stacked object and its conjoining rule. Standard results from screw theory and previous work are combined with corollaries of Lord’s observation to allow calculations of segmented helices from either transformation matrices or four known consecutive points. The construction of these from the intrinsic properties of the rule for conjoining repeated subunits of arbitrary shape is provided, allowing the complete parameters describing the unique segmented helix generated by arbitrary stackings to be easily calculated. Free/Libre open-source interactive software and a website which performs this computation for arbitrary prisms along with interactive 3D visualization is provided. We prove that any subunit can produce a toroid-like helix or a maximally-extended helix, forming a continuous spectrum based on joint-face normal twist. This software, website and paper, taken together, compute, render, and catalog an exhaustive “zoo” of 28 uniquely-shaped platonic helices, such as the Boerdijk–Coxeter tetrahelix and various species of helices formed from dodecahedra. Full article
Show Figures

Graphical abstract

Back to TopTop