Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = planktonic tunicate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1858 KiB  
Article
Biological, Biochemical and Elemental Traits of Clavelina oblonga, an Invasive Tunicate in the Adriatic Sea
by Natalija Topić Popović, Bojan Hamer, Ivančica Strunjak-Perović, Tibor Janči, Željka Fiket, Matilda Mali, Luca Privileggio, Kristina Grozić, Dijana Pavičić-Hamer, Lucija Vranjković, Tamara Vujović, Marija Miloš, Maria Michela Dell’Anna, Darya Nefedova and Rozelindra Čož-Rakovac
Animals 2025, 15(10), 1371; https://doi.org/10.3390/ani15101371 - 9 May 2025
Viewed by 579
Abstract
Clavelina oblonga is an invasive tropical tunicate recently introduced into the Adriatic Sea as a consequence of globalization and climate change. Mussel aquaculture sites provide an ideal environment for this colonial ascidian, where it has recently become the dominant fouling species. This study [...] Read more.
Clavelina oblonga is an invasive tropical tunicate recently introduced into the Adriatic Sea as a consequence of globalization and climate change. Mussel aquaculture sites provide an ideal environment for this colonial ascidian, where it has recently become the dominant fouling species. This study represents the first investigation of its biological and physical characteristics, as well as its proximal, fatty acid, macroelement, trace element, and toxic metal composition. The entire-tissue chemical composition of C. oblonga resulted in 95.44% moisture. Its composite structure revealed several strong peaks, attributed to O-H, C-H, C-N, and C=O stretching, along with cellulose components overlapping with proteins and carbohydrates. The major fatty acids were palmitic, stearic, and docosahexaenoic acid, followed by docosanoic, elaidic, linoleic, and myristic acid. The saturated fatty acids, polyunsaturated fatty acids, and monounsaturated fatty acids comprised 51.37, 26.96, and 15.41% of the total fatty acids, respectively. Among the analysed trace and macroelements, aluminium and sodium were predominant. C. oblonga exhibited different concentrations of toxic metals, such as arsenic and lead, compared to fouled mussels in the Istria region. It appears that the tunicate has adapted to the environmental conditions of the Adriatic, reaching its maximum spread and biomass in mid-autumn. There is a strong possibility that C. oblonga could colonize and establish itself permanently in the Adriatic. This would have a strong negative impact on shellfish farming, the structure of the ecosystem, plankton biomass, and the distribution of other marine species. However, it also represents a biomass resource with high potential of utilization in different industries. Full article
Show Figures

Graphical abstract

19 pages, 10041 KiB  
Article
Intelligent Detection and Recognition of Marine Plankton by Digital Holography and Deep Learning
by Xianfeng Xu, Weilong Luo, Zhanhong Ren and Xinjiu Song
Sensors 2025, 25(7), 2325; https://doi.org/10.3390/s25072325 - 6 Apr 2025
Viewed by 717
Abstract
The detection, observation, recognition, and statistics of marine plankton are the basis of marine ecological research. In recent years, digital holography has been widely applied to plankton detection and recognition. However, the recording and reconstruction of digital holography require a strictly controlled laboratory [...] Read more.
The detection, observation, recognition, and statistics of marine plankton are the basis of marine ecological research. In recent years, digital holography has been widely applied to plankton detection and recognition. However, the recording and reconstruction of digital holography require a strictly controlled laboratory environment and time-consuming iterative computation, respectively, which impede its application in marine plankton imaging. In this paper, an intelligent method designed with digital holography and deep learning algorithms is proposed to detect and recognize marine plankton (IDRMP). An accurate integrated A-Unet network is established under the principle of deep learning and trained by digital holograms recorded with publicly available plankton datasets. This method can complete the work of reconstructing and recognizing a variety of plankton organisms stably and efficiently by a single hologram, and a system interface of YOLOv5 that can realize the task of the end-to-end detection of plankton by a single frame is provided. The structural similarities of the images reconstructed by IDRMP are all higher than 0.97, and the average accuracy of the detection of four plankton species, namely, Appendicularian, Chaetognath, Echinoderm and Hydromedusae,, reaches 91.0% after using YOLOv5. In optical experiments, typical marine plankton collected from Weifang, China, are employed as samples. For randomly selected samples of Copepods, Tunicates and Polychaetes, the results are ideal and acceptable, and a batch detection function is developed for the learning of the system. Our test and experiment results demonstrate that this method is efficient and accurate for the detection and recognition of numerous plankton within a certain volume of space after they are recorded by digital holography. Full article
(This article belongs to the Special Issue Digital Holography in Optics: Techniques and Applications)
Show Figures

Figure 1

18 pages, 2027 KiB  
Article
Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China
by Jiaxing Li, Wenjun Zheng, Zhonglu Cai, Jin Ma, Geng Li, Bo Ma, Jing Zhao, Zhonghong Li, Shuang Li, Mingkang Chen and Chuang Gao
Water 2024, 16(19), 2711; https://doi.org/10.3390/w16192711 - 24 Sep 2024
Viewed by 1282
Abstract
The characteristics of zooplankton communities and the relationships with the aquatic environment in the shallow waters of northern Liaodong Bay were investigated. Spot sampling surveys were carried out in April, June, September, and November 2018 to assess zooplankton species composition and diversity, abundance, [...] Read more.
The characteristics of zooplankton communities and the relationships with the aquatic environment in the shallow waters of northern Liaodong Bay were investigated. Spot sampling surveys were carried out in April, June, September, and November 2018 to assess zooplankton species composition and diversity, abundance, biomass, and dominant species, and the associated relationships with environmental factors. A total of 45 species of zooplankton were recorded in the survey, comprising 18 Copepoda, 2 Amphipoda, 1 Mysidacea, 1 Decapoda, 1 Chaetognatha, 7 Hydrozoa, 1 Tunicate, and 14 planktonic larvae. Overall, the most dominant species was Aidanosagitta crassa (Tokioka, 1938), with copepods and planktonic larvae also dominating the zooplankton community. However, there was a seasonal alternation of species dominance. A cluster analysis showed that the zooplankton community in spring differed from other seasons and was mostly influenced by suspended particulate matter. Bioenv analysis indicated the main environmental factor affecting the zooplankton community in spring was suspended particulate matter. In summer, the determining variables were temperature, dissolved inorganic nitrogen (DIN), nitrate, and sediment pH. In autumn, temperature, DIN, and nitrate were determining variables, and dissolved oxygen (DO) and DIN in winter. Zooplankton abundance and biomass were influenced by salinity, suspended particulate matter, chemical oxygen demand (COD), chlorophyll, and water and sediment pH. In general, the shallow sea area north of Liaodong Bay is rich in zooplankton species and exhibits significant seasonal variations. Human activities have disturbed the biological community to a certain extent, and the environmental factors in this area are closely related to the diversity of zooplankton species. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 7843 KiB  
Article
Distribution and Demography of Antarctic Krill and Salps in the Atlantic Sector of the Southern Ocean during Austral Summer 2021–2022
by Dmitrii G. Bitiutskii, Ernest Z. Samyshev, Natalia I. Minkina, Victor V. Melnikov, Elena S. Chudinovskih, Sergei I. Usachev, Pavel A. Salyuk, Alexander N. Serebrennikov, Oleg A. Zuev and Alexei M. Orlov
Water 2022, 14(23), 3812; https://doi.org/10.3390/w14233812 - 23 Nov 2022
Cited by 16 | Viewed by 4883
Abstract
The study aimed to investigate krill (Euphausia superba) and salp (Salpa thompsoni) populations in the Atlantic sector of the Southern Ocean in January and February 2022. Samples were obtained to measure the abundance, biomass and distribution patterns of krill [...] Read more.
The study aimed to investigate krill (Euphausia superba) and salp (Salpa thompsoni) populations in the Atlantic sector of the Southern Ocean in January and February 2022. Samples were obtained to measure the abundance, biomass and distribution patterns of krill and salp. Sex differences and feeding habits of the Antarctic krill were determined. The dependence of the physiological state of the studied aquatic organisms on changes in environmental parameters was analyzed. Current data on the association of the dynamics of hydrometeorological parameters and processes with the distribution of chlorophyll a, krill, and salp were obtained. It was established that, at numerous stations, the biomass of salps prevailed over krill. The result indicates the replacement of the Antarctic krill populations by gelatinous zooplankton. The obtained results allow assessment of the biological resource potential in the studied region based on the analysis of the samples collected. Full article
Show Figures

Figure 1

Back to TopTop