Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = phytodetritus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2503 KiB  
Review
Cellular Damage of Bacteria Attached to Senescent Phytoplankton Cells as a Result of the Transfer of Photochemically Produced Singlet Oxygen: A Review
by Jean-François Rontani and Patricia Bonin
Microorganisms 2023, 11(6), 1565; https://doi.org/10.3390/microorganisms11061565 - 13 Jun 2023
Viewed by 1852
Abstract
Several studies set out to explain the presence of high proportions of photooxidation products of cis-vaccenic acid (generally considered to be of bacterial origin) in marine environments. These studies show that these oxidation products result from the transfer of singlet oxygen from senescent [...] Read more.
Several studies set out to explain the presence of high proportions of photooxidation products of cis-vaccenic acid (generally considered to be of bacterial origin) in marine environments. These studies show that these oxidation products result from the transfer of singlet oxygen from senescent phytoplankton cells to the bacteria attached to them in response to irradiation by sunlight. This paper summarizes and reviews the key findings of these studies, i.e., the demonstration of the process at work and the effect of different parameters (intensity of solar irradiance, presence of bacterial carotenoids, and presence of polar matrices such as silica, carbonate, and exopolymeric substances around phytoplankton cells) on this transfer. A large part of this review looks at how this type of alteration of bacteria can affect the preservation of algal material in the marine environment, especially in polar regions where conditions drive increased transfer of singlet oxygen from sympagic algae to bacteria. Full article
(This article belongs to the Special Issue Latest Review Papers in Environmental Microbiology 2023)
Show Figures

Figure 1

21 pages, 1920 KiB  
Article
Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf
by Richard B. Coffin, Joseph P. Smith, Brandon Yoza, Thomas J. Boyd and Michael T. Montgomery
Energies 2017, 10(9), 1265; https://doi.org/10.3390/en10091265 - 25 Aug 2017
Cited by 9 | Viewed by 4873
Abstract
In September 2009, a series of sediment cores were collected across the Alaskan Beaufort Sea shelf-slope. Sediment and porewater organic carbon (OC) concentrations and stable carbon isotope ratios (δ13C) were measured to investigate spatial variations in sediment organic matter (OM) sources [...] Read more.
In September 2009, a series of sediment cores were collected across the Alaskan Beaufort Sea shelf-slope. Sediment and porewater organic carbon (OC) concentrations and stable carbon isotope ratios (δ13C) were measured to investigate spatial variations in sediment organic matter (OM) sources and distribution of these materials across the shelf. Cores were collected along three main nearshore (shelf) to offshore (slope) sampling lines (transects) from east-to-west along the North Slope of Alaska: Hammerhead (near Camden Bay), Thetis Island (near Prudhoe Bay), and Cape Halkett (towards Point Barrow). Measured sediment organic carbon (TOC) and porewater dissolved organic carbon (DOC) concentrations and their respective δ13C values were used to investigate the relative contribution of different OM sources to sediment OC pool cycled at each location. Sources of OM considered included: water column-sourced phytodetritus, deep sediment methane (CH4), and terrestrial, tundra/river-sourced OM. Results of these measurements, when coupled with results from previous research and additional analyses of sediment and porewater composition, show a pattern of spatial variation in sediment OC concentrations, OM source contributions, and OM cycled along the Alaskan Beaufort Sea shelf. In general, measured sediment total organic carbon (TOC) concentrations, δ13CTOC values, porewater DOC concentrations, and δ13CDOC values are consistent with an east-to-west transport of modern Holocene sediments with higher OC concentrations primarily sourced from relatively labile terrestrial, tundra OM sources and phytodetritus along the Alaskan Beaufort shelf. Sediment transport along the shelf results in the medium-to-long term accumulation and burial of sediment OM focused to the west which in turn results in higher biogenic CH4 production rates and higher upward CH4 diffusion through the sediments resulting in CH4AMO-sourced contribution to sediment OC westward along the shelf. Understanding current OM sources and distributions along the Alaskan Beaufort shelf is important for enhancing models of carbon cycling in Arctic coastal shelf systems. This will help support the prediction of the climate response of the Arctic created in the face of future warming scenarios. Full article
Show Figures

Figure 1

25 pages, 1493 KiB  
Article
Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand
by Richard B. Coffin, Leila J. Hamdan, Joseph P. Smith, Paula S. Rose, Rebecca E. Plummer, Brandon Yoza, Ingo Pecher and Michael T. Montgomery
Energies 2014, 7(8), 5332-5356; https://doi.org/10.3390/en7085332 - 18 Aug 2014
Cited by 28 | Viewed by 9167
Abstract
Moderate elevated vertical methane (CH4) flux is associated with sediment accretion and raised fluid expulsion at the Hikurangi subduction margin, located along the northeast coast of New Zealand. This focused CH4 flux contributes to the cycling of inorganic and organic [...] Read more.
Moderate elevated vertical methane (CH4) flux is associated with sediment accretion and raised fluid expulsion at the Hikurangi subduction margin, located along the northeast coast of New Zealand. This focused CH4 flux contributes to the cycling of inorganic and organic carbon in solid phase sediment and pore water. Along a 7 km offshore transect across the Porangahau Ridge, vertical CH4 flux rates range from 11.4 mmol·m−2·a−1 off the ridge to 82.6 mmol·m−2·a−1 at the ridge base. Stable carbon isotope ratios (δ13C) in pore water and sediment were variable across the ridge suggesting close proximity of heterogeneous carbon sources. Methane stable carbon isotope ratios ranging from −107.9‰ to −60.5‰ and a C1:C2 of 3000 indicate a microbial, or biogenic, source. Near ridge, average δ13C for pore water and sediment inorganic carbon were 13C-depleted (−28.7‰ and −7.9‰, respectively) relative to all core subsamples (−19.9‰ and −2.4‰, respectively) suggesting localized anaerobic CH4 oxidation and precipitation of authigenic carbonates. Through the transect there was low contribution from anaerobic oxidation of CH4 to organic carbon pools; for all cores δ13C values of pore water dissolved organic carbon and sediment organic carbon averaged −24.4‰ and −22.1‰, respectively. Anaerobic oxidation of CH4 contributed to pore water and sediment organic carbon near the ridge as evidenced by carbon isotope values as low as to −42.8‰ and −24.7‰, respectively. Carbon concentration and isotope analyses distinguished contributions from CH4 and phytodetrital carbon sources across the ridge and show a low methane contribution to organic carbon. Full article
(This article belongs to the Special Issue Coastal Ocean Natural Gas Hydrate 2014)
Show Figures

Figure 1

21 pages, 480 KiB  
Article
Photochemical Production and Behavior of Hydroperoxyacids in Heterotrophic Bacteria Attached to Senescent Phytoplanktonic Cells
by Morgan Petit, Richard Sempéré, Frédéric Vaultier and Jean-François Rontani
Int. J. Mol. Sci. 2013, 14(6), 11795-11815; https://doi.org/10.3390/ijms140611795 - 3 Jun 2013
Cited by 9 | Viewed by 8843
Abstract
The photooxidation of cellular monounsaturated fatty acids was investigated in senescent phytoplanktonic cells (Emiliania huxleyi) and in their attached bacteria under laboratory controlled conditions. Our results indicated that UV-visible irradiation of phytodetritus induced the photooxidation of oleic (produced by phytoplankton and [...] Read more.
The photooxidation of cellular monounsaturated fatty acids was investigated in senescent phytoplanktonic cells (Emiliania huxleyi) and in their attached bacteria under laboratory controlled conditions. Our results indicated that UV-visible irradiation of phytodetritus induced the photooxidation of oleic (produced by phytoplankton and bacteria) and cis-vaccenic (specifically produced by bacteria) acids. These experiments confirmed the involvement of a substantial singlet oxygen transfer from senescent phytoplanktonic cells to attached bacteria, and revealed a significant correlation between the concentration of chlorophyll, a photosensitizer, in the phytodetritus and the photodegradation state of bacteria. Hydroperoxyacids (fatty acid photoproducts) appeared to be quickly degraded to ketoacids and hydroxyacids in bacteria and in phytoplanktonic cells. This degradation involves homolytic cleavage (most likely induced by UV and/or transition metal ions) and peroxygenase activity (yielding epoxy acids). Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Back to TopTop