Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = phreatic water desert shallows oasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8133 KiB  
Article
Groundwater Hydrochemistry and Recharge Process Impacted by Human Activities in an Oasis–Desert in Central Asia
by Yuan Yao, Chenwei Tu, Gaojia Hu, Yuhan Zhang, Hanyuan Cao, Wanrui Wang and Weihua Wang
Water 2024, 16(5), 763; https://doi.org/10.3390/w16050763 - 3 Mar 2024
Cited by 2 | Viewed by 2694
Abstract
Intense anthropogenic activities in arid regions remarkably affect groundwater by causing phreatic decline and water environmental deterioration. A systematic understanding of groundwater hydrochemical evolution and recharge is critical to regional water, ecological and agricultural security in arid regions, but is not well known [...] Read more.
Intense anthropogenic activities in arid regions remarkably affect groundwater by causing phreatic decline and water environmental deterioration. A systematic understanding of groundwater hydrochemical evolution and recharge is critical to regional water, ecological and agricultural security in arid regions, but is not well known in arid oasis–deserts. This research identified groundwater recharge processes and assessed the impact of anthropogenic activities on groundwater hydrochemical evolution in a representative oasis–desert in Central Asia using stable isotopic indicators (δ2H and δ18O) and hydrochemical data. Results indicated that the normalized difference vegetation index (NDVI) and cultivated land area exhibited a significant increasing trend during 2000 to 2020. Stable water isotopes and the ionic composition of both groundwater and surface water exhibited obviously spatial heterogeneity and seasonal variation. Generally, the spatial distribution pattern of major dissolved ions for shallow groundwater was consistent and increased along the groundwater flow direction from midstream to downstream. Surface water and groundwater were both characterized by higher δ18O and total dissolved solids (TDS) in the non-flood season than those in the flood season. Shallow groundwater had a larger seasonal variation in δ18O and TDS than other water components. Groundwater level in monitored wells generally presented a decreasing trend from 2018 to 2021, accompanied by a decrease in phreatic water TDS and NDVI in the desert area. Gypsum dissolution and weathering of silicate and halite had an important role in forming groundwater hydrochemistry. Anthropogenic activities significantly affected groundwater hydrochemistry and recharge. Shallow groundwater received its primary recharge from surface water and lateral groundwater flow, constituting 73% and 27% of the total recharge, respectively. Agricultural activities and groundwater overexploitation were the main factors for variations in groundwater level and quality in the oasis area, and directly affected groundwater and natural vegetation in the desert area. The results would be helpful to deeply understand groundwater hydrochemical evolution and cycling, and beneficial for groundwater efficient utilization and desert ecosystem restoration in the arid areas. Full article
Show Figures

Figure 1

19 pages, 8041 KiB  
Article
Spatiotemporal Variation and Influencing Factors of Vegetation Growth in Mining Areas: A Case Study in a Colliery in Northern China
by Zhi Yang, Wenping Li, Liangning Li, Shaogang Lei, Jiawei Tian, Gang Wang and Xuejia Sang
Sustainability 2022, 14(15), 9585; https://doi.org/10.3390/su14159585 - 4 Aug 2022
Cited by 3 | Viewed by 1874
Abstract
Based on MODIS EVI data of August collected from 2010 to 2021, and taking the Yingpanhao coal mine as an example, the spatiotemporal variation features of vegetation are analyzed using time series analysis, trend analysis and correlation analysis methods in the eco-geo-environment of [...] Read more.
Based on MODIS EVI data of August collected from 2010 to 2021, and taking the Yingpanhao coal mine as an example, the spatiotemporal variation features of vegetation are analyzed using time series analysis, trend analysis and correlation analysis methods in the eco-geo-environment of the phreatic water desert shallows oasis. A significant increase trend is found for vegetation variation, and its development has improved generally in most areas. There is an obvious positive correlation between precipitation and vegetation growth, and a negative correlation between coal mining intensity and vegetation growth, but the influence of atmospheric precipitation on vegetation growth is stronger than that of coal mining intensity in the eco-geo-environment. The research results effectively reflect that atmospheric precipitation is the primary factor advancing the vegetation growth status in the coal mining regions. Vegetation development response to coal mining would be degraded first, then improved, and finally restored in areas with a deeply buried phreatic water level; that would promote the transformation of vegetation species from hydrophilous plants to xerophyte plants in areas with a shallowly buried phreatic water level. Therefore, it is necessary to carry out reasonable mine field planning according to the phreatic water level and the vegetation type distribution and to adopt different coal mining methods or corresponding engineering and technical measures to realize water conservation to avoid damaging the original hydrogeological conditions as far as possible. This information is helpful for promoting the eco-geo-environmental protection and further establishing the need for the dynamic monitoring of the eco-environment in the coal mining regions in the arid and semi-arid ecologically vulnerable areas of Northern China, which play a significant role in the long-term protection and rehabilitation of the eco-geo-environment and in the promotion of sustainable development. Full article
Show Figures

Figure 1

18 pages, 6299 KiB  
Article
Assessing the Influences of Land Use Change on Groundwater Hydrochemistry in an Oasis-Desert Region of Central Asia
by Wanrui Wang, Yapeng Chen, Weihua Wang, Yuhai Yang, Yifeng Hou, Shuai Zhang and Ziyang Zhu
Water 2022, 14(4), 651; https://doi.org/10.3390/w14040651 - 19 Feb 2022
Cited by 11 | Viewed by 2669
Abstract
Land use change greatly affects groundwater hydrochemical cycling and thereby food and ecosystem security in arid regions. Spatiotemporal distribution of groundwater hydrochemistry is vital to understand groundwater water-salt migration processes in the context of land use change, while it is not well known [...] Read more.
Land use change greatly affects groundwater hydrochemical cycling and thereby food and ecosystem security in arid regions. Spatiotemporal distribution of groundwater hydrochemistry is vital to understand groundwater water-salt migration processes in the context of land use change, while it is not well known in the oasis-desert region of arid inland basins. Here, to investigate the influences of land use change on groundwater hydrochemistry and suggest sustainable management, 67 water samples were obtained in the Luntai Oasis, a typical oasis desert of Central Asia. Stable isotopes and chemical components of samples were analyzed. Piper and Gibbs plots were used to elaborate the chemical type and major mechanisms controlling water chemistry, respectively. The results showed that cultivated land area has markedly expanded in the Luntai Oasis over the last 20 years (increasing by 121.8%). Groundwater seasonal dynamics and groundwater–surface water interaction were altered dramatically by farmland expansion and groundwater exploitation. Specifically, the spatial heterogeneity and seasonal variability of groundwater hydrochemistry were significant. Compared with the desert area, the δ18O and TDS of river water and shallow groundwater in the oasis cropland exhibited lower values but greater seasonal variation. Higher TDS was observed in autumn for river water, and in spring for shallow groundwater. The chemical evolution of phreatic water was mainly controlled by the evaporation-crystallization process and rock dominance, with a chemical type of Cl-SO4-Na-Mg. Significant spatiotemporal heterogeneity of groundwater hydrochemistry demonstrated the influence of climatic, hydrogeological, land use, and anthropogenic conditions. Groundwater overexploitation would cause phreatic water leakage into confined water, promoting groundwater quality deterioration due to fresh saltwater mixing. Improving agricultural drainage ditches in conjunction with restricting farmland expansion and groundwater extraction is an effective way to alleviate groundwater environment deterioration and maintain oasis-desert ecosystems in arid regions. Full article
(This article belongs to the Special Issue Advances in Studies on Ecohydrological Processes in the Arid Area)
Show Figures

Figure 1

Back to TopTop