Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Keywords = photonic integrated cross-connect switch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3606 KiB  
Review
Towards Large-Scale Fast Reprogrammable SOA-Based Photonic Integrated Switch Circuits
by Ripalta Stabile
Appl. Sci. 2017, 7(9), 920; https://doi.org/10.3390/app7090920 - 7 Sep 2017
Cited by 13 | Viewed by 5580
Abstract
Due to the exponentially increasing connectivity and bandwidth demand from the Internet, the most advanced examples of medium-scale fast reconfigurable photonic integrated switch circuits are offered by research carried out for data- and computer-communication applications, where network flexibility at a high speed and [...] Read more.
Due to the exponentially increasing connectivity and bandwidth demand from the Internet, the most advanced examples of medium-scale fast reconfigurable photonic integrated switch circuits are offered by research carried out for data- and computer-communication applications, where network flexibility at a high speed and high connectivity are provided to suit network demand. Recently we have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip for high connectivity. In this paper, the current status of fast reconfigurable medium-scale indium phosphide (InP) integrated photonic switch matrices based on the use of semiconductor optical amplifier (SOA) gates is reviewed, focusing on broadband and cross-connecting monolithic implementations, granting a connectivity of up to sixteen input ports, sixteen output ports, and sixty-four channels, respectively. The opportunities for increasing connectivity, enabling nanosecond order reconfigurability, and introducing distributed optical power monitoring at the physical layer are highlighted. Complementary architecture based on resonant switching elements on the same material platform are also discussed for power efficient switching. Performance projections related to the physical layer are presented and strategies for improvements are discussed in view of opening a route towards large-scale power efficient fast reprogrammable photonic integrated switching circuits. Full article
(This article belongs to the Special Issue Applications of Semiconductor Optical Amplifiers)
Show Figures

Figure 1

13 pages, 6358 KiB  
Article
SOA Based Photonic Integrated WDM Cross-Connects for Optical Metro-Access Networks
by Nicola Calabretta, Wang Miao, Ketemaw Mekonnen and Kristif Prifti
Appl. Sci. 2017, 7(9), 865; https://doi.org/10.3390/app7090865 - 23 Aug 2017
Cited by 35 | Viewed by 7203
Abstract
We present a novel optical metro node architecture that exploits the Wavelength Division Multiplexing (WDM) optical cross-connect nodes for interconnecting network elements, as well as computing and storage resources. The photonic WDM cross-connect node based on semiconductor optical amplifiers (SOA) allows switching data [...] Read more.
We present a novel optical metro node architecture that exploits the Wavelength Division Multiplexing (WDM) optical cross-connect nodes for interconnecting network elements, as well as computing and storage resources. The photonic WDM cross-connect node based on semiconductor optical amplifiers (SOA) allows switching data signals in wavelength, space, and time for fully exploiting statistical multiplexing. The advantages of using an SOA to realize the WDM cross-connect switch in terms of transparency, switching speed, photonic integrated amplification for loss-less operation, and gain equalization are verified experimentally. The experimental assessment of a 4 × 4 photonic integrated WDM cross-connect confirmed the capability of the cross-connect chip to switch the WDM signal in space and wavelength. Experimental results show lossless operation, low cross-talk <−30 dB, and dynamically switch within few nanoseconds. Moreover, the operation of the cross-connect switch with multiple WDM channels and diverse modulation formats is also investigated and reported. Error-free operation with less than a 2 dB power penalty for a single channel, as well as WDM input operation, has been measured for multiple 10/20/40 Gb/s NRZ-OOK, 20 Gb/s PAM4, and data-rate adaptive DMT traffic. Compensation of the losses indicates that the modular architecture could scale to a larger number of ports. Full article
(This article belongs to the Special Issue Applications of Semiconductor Optical Amplifiers)
Show Figures

Figure 1

Back to TopTop