Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = phenoxymethyl penicillin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7595 KiB  
Article
Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/rubens Strain Portfolio for Penicillin V Production
by Amol M. Sawant, Vishwambar D. Navale and Koteswara Rao Vamkudoth
Microorganisms 2023, 11(5), 1132; https://doi.org/10.3390/microorganisms11051132 - 26 Apr 2023
Cited by 8 | Viewed by 9194
Abstract
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium [...] Read more.
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography–high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production. Full article
Show Figures

Figure 1

13 pages, 3701 KiB  
Review
Penicillins’ Solubility in Supercritical Carbon Dioxide: Modeling by Cubic Equations of States Revisited
by Loubna Nasri
Antibiotics 2021, 10(12), 1448; https://doi.org/10.3390/antibiotics10121448 - 25 Nov 2021
Cited by 6 | Viewed by 2620
Abstract
Development of processes using green solvents as supercritical fluids (SCFs) depends on the accuracy of modeling and predicting phase equilibrium which is of considerable importance to exploit the use of SCF process at the level of pharmaceutical industries. Solid-Fluid equilibrium modeling is associated [...] Read more.
Development of processes using green solvents as supercritical fluids (SCFs) depends on the accuracy of modeling and predicting phase equilibrium which is of considerable importance to exploit the use of SCF process at the level of pharmaceutical industries. Solid-Fluid equilibrium modeling is associated to many drawbacks when compressed gas-based models as cubic equations of states (cEoSs) are used. The unavailability of experimental values of solute’s sublimation pressure presents one of the major obstacles to the solubility modeling with this type of models, and thus, its estimation is essential and inevitable. This work is an attempt to address a question regarding “accurate estimated value” of sublimation pressure of two antibiotics Penicillin G (benzyl penicillin) and Penicillin V (phenoxymethyl penicillin). Toward that, first, cEoSs are provided as the thermodynamics modeling framework and fundamental approach. Second, a discussion and a review of some literature results are given. Third, results are invoked to present a criticism analysis that comes from the use of modified form of Peng-Robinson (PR) equation of states. Finally, considerable improvement of modeling results by using a new sublimation pressure is shown. Full article
Show Figures

Figure 1

Back to TopTop