Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = phenanthrene dimers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5358 KiB  
Article
Testing the Simplified Molecular Dynamics Approach to Improve the Reproduction of ECD Spectra and Monitor Aggregation
by Attila Mándi, Aliz Rimóczi, Andrea Vasas, Judit Hohmann, Mahadeva M. M. Swamy, Kenji Monde, Roland A. Barta, Máté Kicsák, István Komáromi, Krisztina Fehér and Tibor Kurtán
Int. J. Mol. Sci. 2024, 25(12), 6453; https://doi.org/10.3390/ijms25126453 - 12 Jun 2024
Viewed by 1233
Abstract
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit [...] Read more.
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed. Full article
(This article belongs to the Special Issue Quantum and Classical Molecular Dynamics)
Show Figures

Figure 1

23 pages, 3061 KiB  
Article
Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction
by Lauren Kearney, Michael P. Brandon, Andrew Coleman, Ann M. Chippindale, František Hartl, Ralte Lalrempuia, Martin Pižl and Mary T. Pryce
Molecules 2023, 28(10), 4149; https://doi.org/10.3390/molecules28104149 - 17 May 2023
Cited by 2 | Viewed by 3098
Abstract
Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 [...] Read more.
Three novel rhenium N−heterocyclic carbene complexes, [Re]−NHC−1−3 ([Re] = fac−Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re−NHC−1 and Re−NHC−2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re−NHC−2 differs from Re−NHC−1 by replacing N−H with an N−benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re−NHC−2 with the larger pyrene gives Re−NHC−3. The two−electron electrochemical reductions of Re−NHC−2 and Re−NHC−3 result in the formation of the five−coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re−Re bound dimer intermediates at the second cathodic wave R2. All three Re−NHC−1−3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re−NHC−3, being the most effective for this conversion. Re−NHC−1 and Re−NHC−2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re−NHC−3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re−NHC−3 is red−shifted compared to those of Re−NHC−1 and Re−NHC−2, and previously reported similar [Re]−NHC complexes. This observation, together with TD−DFT calculations, suggests that the nature of the lowest−energy optical excitation for Re−NHC−3 has π→π*(NHC−pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re−NHC−3 are attributed to the extended conjugation of the π−electron system, leading to the beneficial modulation of the strongly electron−donating tendency of the NHC group. Full article
(This article belongs to the Special Issue Molecules in 2023)
Show Figures

Figure 1

12 pages, 6320 KiB  
Article
Chemical and Biological Profiles of Dendrobium in Two Different Species, Their Hybrid, and Gamma-Irradiated Mutant Lines of the Hybrid Based on LC-QToF MS and Cytotoxicity Analysis
by Bomi Nam, Hyun-Jae Jang, Ah-Reum Han, Ye-Ram Kim, Chang-Hyun Jin, Chan-Hun Jung, Kyo-Bin Kang, Sang-Hoon Kim, Min-Jeong Hong, Jin-Baek Kim and Hyung-Won Ryu
Plants 2021, 10(7), 1376; https://doi.org/10.3390/plants10071376 - 5 Jul 2021
Cited by 15 | Viewed by 3714
Abstract
The Dendrobium species (Orchidaceae) has been cultivated as an ornamental plant as well as used in traditional medicines. In this study, the chemical profiles of Dendrobii Herba, used as herbal medicine, Dendrobium in two different species, their hybrid, and the gamma-irradiated mutant lines [...] Read more.
The Dendrobium species (Orchidaceae) has been cultivated as an ornamental plant as well as used in traditional medicines. In this study, the chemical profiles of Dendrobii Herba, used as herbal medicine, Dendrobium in two different species, their hybrid, and the gamma-irradiated mutant lines of the hybrid, were systematically investigated via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QToF MS). Among the numerous peaks detected, 17 peaks were unambiguously identified. Gigantol (1), (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (2), tristin (3), (−)-syringaresinol (4), lusianthridin (5), 2,7-dihydroxy-phenanthrene-1,4-dione (6), densiflorol B (7), denthyrsinin (8), moscatilin (9), lusianthridin dimer (10), batatasin III (11), ephemeranthol A (12), thunalbene (13), dehydroorchinol (14), dendrobine (15), shihunine (16), and 1,5,7-trimethoxy-2-phenanthrenol (17), were detected in Dendrobii Herba, while 1, 2, and 16 were detected in D. candidum, 1, 11, and 16 in D. nobile, and 1, 2, and 16 in the hybrid, D. nobile × candidum. The methanol extract taken of them was also examined for cytotoxicity against FaDu human hypopharynx squamous carcinoma cells, where Dendrobii Herba showed the greatest cytotoxicity. In the untargeted metabolite analysis of 436 mutant lines of the hybrid, using UPLC-QToF MS and cytotoxicity measurements combined with multivariate analysis, two tentative flavonoids (M1 and M2) were evaluated as key markers among the analyzed metabolites, contributing to the distinction between active and inactive mutant lines. Full article
Show Figures

Figure 1

11 pages, 817 KiB  
Article
Juncaceae Species as Promising Sources of Phenanthrenes: Antiproliferative Compounds from Juncus maritimus Lam
by Norbert Kúsz, Dóra Stefkó, Anita Barta, Annamária Kincses, Nikoletta Szemerédi, Gabriella Spengler, Judit Hohmann and Andrea Vasas
Molecules 2021, 26(4), 999; https://doi.org/10.3390/molecules26040999 - 13 Feb 2021
Cited by 7 | Viewed by 3180
Abstract
Juncaceae family represents an abundant source of phenanthrenes. In continuation of our work aiming at the isolation of biologically active compounds from Juncaceae species, Juncus maritimus Lam. was subjected to phytochemical and pharmacological investigations. The isolation process was carried out by using combined [...] Read more.
Juncaceae family represents an abundant source of phenanthrenes. In continuation of our work aiming at the isolation of biologically active compounds from Juncaceae species, Juncus maritimus Lam. was subjected to phytochemical and pharmacological investigations. The isolation process was carried out by using combined extraction and chromatographic methods. The structures of the obtained chemical compounds were elucidated by spectroscopic analysis, including HRESIMS, 1D (1H, 13C-JMOD), and 2D (1H-1H-COSY, HSQC, HMBC, NOESY) NMR spectra. Four new [maritins A–D (14)] and seven known phenanthrenes (511) were isolated from the plant, of which two (4 and 11) are phenanthrene dimers composed of effusol monomers. Maritin C (3) has an unusual 4,5-ethanophenanthrene skeleton most likely produced by biosynthetic incorporation of a vinyl group into a cyclohexadiene ring. Compounds 111 were tested for their antiproliferative activity on seven human tumor cell lines (HeLa, HTM-26, T-47D, A2780, A2780cis, MCF-7, KCR) and one normal cell line (MRC-5) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The dimeric phenanthrenes showed strong antiproliferative activity against T-47D cells with IC50 values of 9.1 and 6.2 µM, respectively. Full article
Show Figures

Figure 1

13 pages, 1213 KiB  
Article
Phenanthrenes from Juncus Compressus Jacq. with Promising Antiproliferative and Anti-HSV-2 Activities
by Csaba Bús, Norbert Kúsz, Gusztáv Jakab, Seyyed Ashkan Senobar Tahaei, István Zupkó, Valéria Endrész, Anita Bogdanov, Katalin Burián, Boglárka Csupor-Löffler, Judit Hohmann and Andrea Vasas
Molecules 2018, 23(8), 2085; https://doi.org/10.3390/molecules23082085 - 20 Aug 2018
Cited by 20 | Viewed by 5367
Abstract
Juncaceae species are rich sources of phenanthrenes. The present study has focused on the isolation and structure determination of biologically active components from Juncus compressus. Eleven compounds (nine phenanthrenes and two flavonoids) have been isolated from the plant by the combination of [...] Read more.
Juncaceae species are rich sources of phenanthrenes. The present study has focused on the isolation and structure determination of biologically active components from Juncus compressus. Eleven compounds (nine phenanthrenes and two flavonoids) have been isolated from the plant by the combination of different chromatographic methods. Two compounds (compressins A (Compound 1) and B (Compound 2)) are novel natural products, while seven phenanthrenes (effusol (Compound 3), effususol (Compound 4), juncusol (Compound 5), 2-hydroxy-1-methyl-4-oxymethylene-5-vinyl-9,10-dihydrophenanthrene (Compound 6), 7-hydroxy-1-methyl-2-methoxy-5-vinyl-9,10-dihydrophenanthrene (Compound 7), effususin A (Compound 8), and dehydroeffusol (Compound 9)), and two flavonoids (apigenin (Compound 10) and luteolin (Compound 11) were isolated for the first time from the plant. Compressin B (Compound 2) is a dimeric phenanthrene, in which two juncusol monomers (Compound 5) are connecting through their C-3 atoms. The structure elucidation of the isolated compounds was carried out using 1D, 2D NMR spectroscopic methods and HR-MS measurements. In vitro investigation of the antiproliferative effect of the phenanthrenes on two cervical (HeLa and SiHa) and an ovarian human tumor cell line (A2780) revealed that compounds have remarkable antiproliferative activity, mainly on the HeLa cell line. Moreover, juncusol (Compound 5) proved to possess significant antiviral activity against the herpes simplex 2 virus (HSV-2). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

9 pages, 862 KiB  
Article
Two New Stilbenoids from the Aerial Parts of Arundina graminifolia (Orchidaceae)
by Florence Auberon, Opeyemi Joshua Olatunji, Stéphanie Krisa, Cyril Antheaume, Gaëtan Herbette, Frédéric Bonté, Jean-Michel Mérillon and Annelise Lobstein
Molecules 2016, 21(11), 1430; https://doi.org/10.3390/molecules21111430 - 27 Oct 2016
Cited by 30 | Viewed by 5052
Abstract
Two new phenanthrene derivatives, a phenanthrenequinone named arundiquinone (1) and a 9,10-dihydrophenanthrene named arundigramin (2) together with a known lignin dimer (3) and seven known stilbenoids (410) were isolated from the aerial parts [...] Read more.
Two new phenanthrene derivatives, a phenanthrenequinone named arundiquinone (1) and a 9,10-dihydrophenanthrene named arundigramin (2) together with a known lignin dimer (3) and seven known stilbenoids (410) were isolated from the aerial parts of the Asian orchid Arundina graminifolia. The structures of the isolated compounds were elucidated by spectroscopic methods, including extensive 1D, 2D NMR (heteronuclear single quantum coherence (HSQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), and HR-ESI-MS techniques, as well as comparison with respective literature reports. The cytoprotective activity of the isolated compounds were evaluated for their ability to reduce beta amyloid induced toxicity on undifferentiated PC12 cells. Compound 8 showed moderate cytoprotective activity at 0.5 µmol/L (71% of cell viability) while the other compounds showed no significant activity at the highest concentration tested. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop