Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = phase-aware minimum mean square error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5781 KB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 774
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

13 pages, 5613 KB  
Article
Control of DC Motors to Guide Unmanned Underwater Vehicles
by Timothy Sands
Appl. Sci. 2021, 11(5), 2144; https://doi.org/10.3390/app11052144 - 28 Feb 2021
Cited by 27 | Viewed by 4821
Abstract
Many research manuscripts propose new methodologies, while others compare several state-of-the-art methods to ascertain the best method for a given application. This manuscript does both by introducing deterministic artificial intelligence (D.A.I.) to control direct current motors used by unmanned underwater vehicles (amongst other [...] Read more.
Many research manuscripts propose new methodologies, while others compare several state-of-the-art methods to ascertain the best method for a given application. This manuscript does both by introducing deterministic artificial intelligence (D.A.I.) to control direct current motors used by unmanned underwater vehicles (amongst other applications), and directly comparing the performance of three state-of-the-art nonlinear adaptive control techniques. D.A.I. involves the assertion of self-awareness statements and uses optimal (in a 2-norm sense) learning to compensate for the deleterious effects of error sources. This research reveals that deterministic artificial intelligence yields 4.8% lower mean and 211% lower standard deviation of tracking errors as compared to the best modeling method investigated (indirect self-tuner without process zero cancellation and minimum phase plant). The improved performance cannot be attributed to superior estimation. Coefficient estimation was merely on par with the best alternative methods; some coefficients were estimated more accurately, others less. Instead, the superior performance seems to be attributable to the modeling method. One noteworthy feature is that D.A.I. very closely followed a challenging square wave without overshoot—successfully settling at each switch of the square wave—while all of the other state-of-the-art methods were unable to do so. Full article
(This article belongs to the Special Issue Underwater Vehicles)
Show Figures

Figure 1

Back to TopTop