
applied  
sciences

Article

Control of DC Motors to Guide Unmanned
Underwater Vehicles

Timothy Sands

����������
�������

Citation: Sands, T. Control of DC

Motors to Guide Unmanned

Underwater Vehicles. Appl. Sci. 2021,

11, 2144. https://doi.org/10.3390/

app11052144

Academic Editor: Massimiliano

Mattei

Received: 20 January 2021

Accepted: 24 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA;
tas297@cornell.edu

Abstract: Many research manuscripts propose new methodologies, while others compare several
state-of-the-art methods to ascertain the best method for a given application. This manuscript does
both by introducing deterministic artificial intelligence (D.A.I.) to control direct current motors
used by unmanned underwater vehicles (amongst other applications), and directly comparing the
performance of three state-of-the-art nonlinear adaptive control techniques. D.A.I. involves the
assertion of self-awareness statements and uses optimal (in a 2-norm sense) learning to compensate
for the deleterious effects of error sources. This research reveals that deterministic artificial intelligence
yields 4.8% lower mean and 211% lower standard deviation of tracking errors as compared to the best
modeling method investigated (indirect self-tuner without process zero cancellation and minimum
phase plant). The improved performance cannot be attributed to superior estimation. Coefficient
estimation was merely on par with the best alternative methods; some coefficients were estimated
more accurately, others less. Instead, the superior performance seems to be attributable to the
modeling method. One noteworthy feature is that D.A.I. very closely followed a challenging square
wave without overshoot—successfully settling at each switch of the square wave—while all of the
other state-of-the-art methods were unable to do so.

Keywords: UUV; actuators; DC motor; rudder control; diving plane control; design and modeling;
deterministic artificial intelligence; nonlinear adaptive control; self-tuning regulators

1. Introduction

Carl Friedrich Gauss is often credited with the development of the least squares
method [1], which can be done recursively, as well-described by Bierman [2]. Various
instantiations of recursive least squares estimation algorithms have often been combined
with modeling assumptions to produce adaptive decision and control methods; for example,
the self-tuning regulators introduced by Kalman [3]. Not long afterward, two similar
algorithms based on least squares and minimum variance control emerged. The first
was presented by Peterka in Prague at an International Federation on Automatic Control
conference [4], followed shortly after by Wieslander and Wittenmark’s publication of an
adaptive control using real time identification [5]. This lineage established the paradigm
that exists today: adaption in two parts—modeling and estimation. From this auspicious
inception, self-tuning regulators remain foundational, being first analyzed thoroughly and
presented by Åström and Wittenmark [6], and later revised [7], at which point the term self-
tuning regulator was adopted. Åström and Wittenmark later produced a seminal text [8]
elaborating on self-tuning regulators, with several variations on modeling assumptions
and estimation algorithms in addition to model-reference adaptive control topologies. This
text included sections on persistent excitation and parameter convergence—as did Slotine
and Li’s text [9], which also included analytic methods for proving stability of the resulting
time-varying nonlinear systems.

More recently, published comparative analyses fixed all factors except the modeling
approach and/or the chosen estimation method, to produce advice regarding which
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methods to use to control direct current (DC) motors. While [10] illustrated quick methods
to decide model degree based on minimizing estimation error, [11] compared indirect
and direct self-tuning models with various degrees of pole excess, with and without
plant cancelling.

Subsequently, several authors have published research incorporating learning meth-
ods into self-tuning control algorithms. Rubaai and Kotaru [12] tackled the problem of
speed control of a DC motor using feedforward artificial neural networks to capture and
emulate detailed nonlinear mappings and implement a full nonlinear control law.

Liu et al. [13] addressed the problem of DC motor speed control using a constant gain
feedback controller (which failed to counter dynamic load torques)—using artificial neural
networks to identify and control online, and therefore modulate control rate. Mishra [14]
used artificial neural networks (ANNs) in estimating and controlling speed for a separately
excited DC motor, (one in which the rotor speed can be made to follow an arbitrarily
selected trajectory to achieve accurate trajectory control of the speed, especially when
the motor and load parameters are unknown). Hernández-Alvarado et al. [15] proposed
neural network-based self-tuning proportional, integral, and derivative (PID) control for
underwater vehicles. Due to difficulties designing based on cost functions, the controllers
were trained with imitation learning [16] on optimized trajectories (which is sometimes
referred to as a form of explicit model predictive control [17]). Model reference adaption
remains an active area of research as well—e.g., Wei’s integration [18] of a control model
with PID components into model reference adaptive control of robots.

Rashwan [19] incorporated indirect self-tuning PID control with a radial basis func-
tion neural network (RBFNN), where its parameters were adjusted depending on linear
adaptive neural network (LANN) parameters using system identification for DC servo
motor speed control.

Just last year Cursi et al. [20] used adaptive kinematic modeling and feedforward
artificial neural networks to control surgical robots. Dengler et al. [21] developed a feedback
control of a mobile inverted pendulum using a form of a parametric function to both
stabilize the system and perform target tracking.

Others include Li et al. [22], who used neural networks for self-tuning of piezoelectric
actuators. Dini et al. [23] combined adaptive control techniques and the theory of statistical
learning—inspired by classical neural networks with several hidden levels, in which the
architecture of the adaptive controller is divided into three different levels, each each of
which implement an algorithm based on learning from data.

Akin to these efforts to incorporate stochastic learning approaches into self-tuning
adaptive controllers, this manuscript proposes utilization of deterministic learning ap-
proaches to augment self-tuning control of DC motors. Cooper et al. [24] illustrated the
profound ability of deterministic self-awareness statements to control highly nonlinear
systems such as the forced van der Pol circuit, while Lobo et al. [25] investigated appli-
cation of deterministic artificial intelligence (D.A.I.) methods applied to spacecraft. In
light of Lobo and Cooper’s advice for follow-up research, Baker et al. [26] elaborated on
autonomous trajectory generation schemes for D.A.I., while Smeresky et al. [27] made
the next step of progress by articulating optimal learning methods and minimizing the
2-norm of estimation errors. Their results revealed worthwhile performance improvement,
applied to spacecraft attitude control. Funded by the U.S. Office of Naval Research, [28]
applied the methodology to unmanned underwater vehicles as a follow-up to implemen-
tation of classical methods [29], culminating in the first book on deterministic artificial
intelligence [30].

Using this established methodology, this manuscript applies the methods to control
DC motors, in direct comparison with the aforementioned self-tuning methods of Åström
and Wittenmark, which were already compared to one another other in 2017 [11]. This
manuscript will describe the detailed development of the deterministic artificial intelligence
method and subsequent application of the method to identical systems of the comparison
in [11]. The demanded trajectory was the square wave, similar to that used in [11], which
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was illustrated in 2020 by Chen et al. [31], in order to remain challenging for nonlinear
adaptive methods. This is displayed in Figure 1a, accompanied by a similar plot from [11]
which establishes context for this manuscript. The research questions addressed include:

1. Can deterministic artificial intelligence (D.A.I.) be successfully applied to DC motors
as has recently been accomplished in spacecraft and unmanned underwater vehicles?

2. How does the control of DC motors with D.A.I. compare to the performance of
indirect and direct self-tuning regulators (with variations of modeling to include plant
cancellations and disparate pole excesses)?

3. Can implementation of D.A.I. aid target tracking of challenging square wave trajecto-
ries superior to the cited nonlinear adaptive control techniques (self-tuning regulators
and model-reference adaptive controllers)?
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2. Materials and Methods

Direct current (DC) motors are common actuators for moving control surfaces on
unmanned underwater vehicles (depicted in Figure 2). Motor control is a robust, well-
known discipline, with state-of-the-art techniques that include nonlinear adaptive methods
(e.g., self-tuning regulators and model-reference adaptive controllers) that are currently
being investigated for efficacy of inclusion of artificial intelligence methods.
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2.1. DC Motor Modeling

The model of the DC motor used here is taken from [8] in discrete form seen in
Equation (1), which may be expressed as the difference equation seen in Equation (2).

G(s) =
1

s(s + 1)
→ G(z) =

0.09842z + 0.09842
z2 − 1.607z + 0.6065

=
Y(z)
U(z)

(1)

0.09842u(t + 1) + 0.09842u(t) = y(t + 2)− 1.607y(t + 1) + 0.6065y(t) (2)
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2.2. Analytic (Autonomous) Trajectory Generation

Baker et al. [26] compared four disparate methods to develop analytic, autonomous
trajectories mimicking the discontinuous step function:

1. MATLAB’s Sine Function
2. 4th Order Taylor Series Approximation
3. Low Precision Approximation Algorithm
4. High Precision Approximation Algorithm

Meanwhile, Smeresky et al. [27] adopted the first (MATLAB’s sine function) to mimic
the discontinuous step function. The comparison presented in this research utilized a
ubiquitous square wave, mimicked piecewise continuously by the sine function (Equa-
tions (9)–(11) in reference [26] and Figure 3 in [28]).
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2.3. Deterministic A.I.: Self-Awareness Statements Using Analytic Trajectory and
Optimal Learning

Shift Equation (2) to isolate u(t), establishing the form of the relationship embody-
ing self-awareness assertion (Equations (3)–(6)). Restrict the system to only respond in
accordance with the self-awareness statement—i.e., formulate u(t)) in accordance with
Equation (7), defining it as u∗(t), which may be expressed in regression form as the product
of a matrix of knowns and a vector of unknowns, thus completing the first step: modeling.
The second step (estimation) uses nominal algorithms based on recursive least squares
algorithms, where the presence of the innovations or residuals indicate augmentation of
recursive least squares as extended least squares. Equation (3) shifts the time index of
Equation (2) to emphasis the calculation of the control—u at time t—after a few mathemati-
cal steps. This leads to Equation (8): the optimal control in feedforward form, annotated
by the asterisk, i.e., u*, which is defined by a regression form of a matrix of knowns, [Φd]
multiplied by a vector of unknowns, {θ̂}, where the vector of unknowns is initialized in
Equation (9), with rough estimates known a priori.

0.09842u(t) + 0.09842u(t− 1) = y(t + 1)− 1.607y(t) + 0.6065y(t− 1) (3)

0.09842
0.09842

u(t) +
0.09842
0.09842

u(t− 1) =
1

0.09842
y(t + 1)− 1.607

0.09842
y(t) +

0.6065
0.09842

y(t− 1) (4)

u(t) + u(t− 1) =
1

0.09842
y(t + 1)− 1.607

0.09842
y(t) +

0.6065
0.09842

y(t− 1) (5)

u(t) =
1

0.09842
y(t + 1)− 1.607

0.09842
y(t) +

0.6065
0.09842

y(t− 1)− u(t− 1) (6)

u∗(t) ≡ â1yd(t + 1)− â2yd(t) + â3yd(t− 1)− b̂1ud(t− 1) (7)
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u∗(t) ≡
[

yd(t + 1) −yd(t) yd(t− 1) −ud(t− 1)
]

â1
â2
â3
b̂1

 = [Φd]
{

θ̂
}

(8)

{
θ̂(0)

}
=


â1
â2
â3
b̂1

 =


10
16
6
1

 rough estimates of


a1
a2
a3
b1

 =


1

0.09842
1.607

0.09842
0.6065

0.09842
1

 ≈


10.16
16.33
6.16

1

 (9)

Isolate y(t + 1) to apply control using dynamic Equation (3):

0.09842u(t) + 0.09842u(t− 1) = y(t + 1)− 1.607y(t) + 0.6065y(t− 1) (10)

y(t + 1) = 1.607y(t)− 0.6065y(t− 1) + 0.09842u∗(t) + 0.09842u∗(t− 1) (11)

Procedure:

1. Initialize the vector of unknowns per Equation (9) to assert self-awareness Equa-
tion (7) or Equation (8) as the control, where [Φd] is formulated using the desired
(analytic) trajectory.

2. Propagate state to y(t + 1) in Equation (11).
3. Use values of y (not yd) and u∗ in RLS (not presented here) to optimally estimate/learn/

update θ̂, to propagate errors projected on system matrix [Φ] (not [Φd]).
4. Apply u∗(t) in Equation (7) or Equation (8) with the optimally learned estimates θ̂.

Section 3 presents the results of direct comparison of the deterministic artificial intelli-
gence (D.A.I.) method described in Section 2 to the nonlinear adaptive methods presented
in [8] and compared in [11]. In all cases, square wave trajectories will be used as com-
manded trajectories.

3. Results

Section 2 developed the method of deterministic artificial intelligence and cited the
development of several self-tuning algorithms and comparisons between them. This
section presents the results of simulation experiments comparing four disparate methods,
where each method attempts to follow a challenging square wave.

1. Indirect self-tuner without process zero cancellation (minimum phase plant).
2. Indirect self-tuner without process zero cancellation (non-minimum phase plant

model assumed).
3. Direct self-tuner with filtering (all process zeros cancelled).
4. Deterministic artificial intelligence.

3.1. Indirect Self-Tuner without Process Zero Cancellation (Minimum Phase Plant)

Minimum degree pole placement is presented as Algorithm 3.1 of reference [8], illus-
trated by example as model-following with zero cancellation (not utilized in this study) and
also model-following without cancellation of process zeros (utilized here). Since the DC
motor discretizes to a second order process, the minimum degree solution of polynomials
R, S, and T in the control law are of first order, making the closed-loop system third order.
Since no zero is cancelled, the compatibility condition (p. 95, [8]) demands that the model
must have the same zero as the process. Parameters estimated by the recursive least squares
family of methods are used to analytically determine coefficients of R, S, and T presented
in [8] (p. 99).

The nonlinear adaptive indirect self-tuner was used without process zero cancellation
to follow a square wave, assuming a minimum phase plant; the results are displayed
in Figures 3 and 4. Figure 3a reveals nominal performance following the square wave;
the performance included the ubiquitous overshoot and settling behavior at each switch
of the square wave. The gain term oscillated very briefly, and then converged toward a
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steady-state value, displayed in Figure 3b. Figure 4a displays estimation by recursive least
squares, while Figure 4b displays extended least squares’ attempts to estimate the residuals.
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3.2. Indirect Self-Tuner without Process Zero Cancellation (Non-Minimum Phase Plant
Model Assumed)

Minimum degree pole placement combined with versions of recursive least squares
established the definition of a self-tuning regulator used in this study. While Section 3.1
displayed the results of indirect self-tuners without cancellation of process, this section
displays the results of using an indirect self-tuner that seeks cancellation of a process zero,
assuming a non-minimum phase plant. The parameters of the model shared the same
structure as in Section 3.1, but the control law included cancellation of process zero.

Figure 5a reveals nominal performance following the square wave, and the perfor-
mance included the ubiquitous overshoot and settling behavior at each switch of the square
wave. The (not depicted) discrete control signal produced “ringing” in the control with a pe-
riod of two sampling periods, while the continuous version zeros (as derived in Section 3.4
of [8]) displayed in Figure 5a eliminated ringing but retained the characteristic overshoot
and settling behavior at each switch of the square wave. Relative to the earlier presented
instance of no zero cancellation, Figure 5b reveals essentially no oscillation amidst con-
vergence towards steady-state gain. Figure 6a displays estimation by least squares, while
Figure 6b displays extended least squares’ attempts to estimate the residuals.
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3.3. Direct Self-Tuner with Filtering (All Process Zeros Cancelled)

Due to the cumbersome design mathematics associated with indirect algorithms,
direct self-tuners seek to reduce or eliminate such calculations by reparametrizing the
model in terms of the parameters of the controller. The procedure is very well described
in Section 3.5 of [8]. The procedure utilizes the Diophantine equation to partition the
reparameterization into the following list:

1. Terms in denominator polynomial A to be found by the estimator.
2. Remaining terms of denominator polynomial A.
3. Terms left over after factoring numerator polynomial B+ : R′B+.
4. B− Gain term plus terms we can’t cancel in numerator polynomial B.
5. Output polynomial of the controller.

The Diophantine equation can be considered a process model that is parameterized
in the coefficients of polynomials B+, R, and S, so the control law is obtained directly
upon parameter estimation without any design efforts. The presence of this term on the
right-hand side of the Diophantine equation makes the model nonlinear in the parameters
(foreshadowing nonoptimality using least squares). Seeking to avoid this difficulty often
leads to the implementation of the special case of constant B− = b0 indicating minimum
phase systems, but this workaround still cancels poorly damped zeros and can lead to
ringing in the control signal.

Figure 7a reveals nominal performance following the square wave, and the performance
included a very large initial overshoot followed by ubiquitous overshoot and settling behavior
at each switch of the square wave. Figure 7b reveals a very rapid estimate convergence.
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3.4. Deterministic Artificial Intelligence

Implementing the procedure in Section 2.3 of this manuscript using the sinusoidal
trajectory of Section 2.2 to mimic the steps in the square wave, Figure 8a displays an
initial overshoot twice as large as in the case of the indirect self-tuner without process zero
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cancellation (minimum phase plant), but much less than the other cases investigated. More
significantly, it appears to have eliminated the repeated overshoots and settling at each
switch of the square wave.
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Figure 8. Deterministic artificial intelligence (where timesteps appear on the abscissa). (a) Command trajectory tracking by
deterministic artificial intelligence with noteworthy comparable initial overshoot, but seemingly eliminating overshoot and
settling at each switch of the square wave. (b) Coefficient estimation illustrating rapid convergence towards the correct
coefficient value with continued convergence at very small scale with time passage.

3.5. Comparison of Estimation Accuracy

This section compiles the estimation error performance for each case investigated.
Table 1 displays coefficient estimation accuracy. Little differences can be discerned between
the ability of recursive least squares-based estimation of parameters with respect to mean
and standard deviation of estimation errors.

Table 1. Coefficient estimation accuracy of all four methods investigated.

Method
Estimates 1

Mean, µ Standard Deviation, σ

Indirect self-tuner without process zero
cancellation (minimum phase plant)

µâ1 0.19537 σâ1 0.1753
µâ2 −0.02096 σâ2 0.12801
µb̂1

0.019307 σb̂1
0.01283

µb̂2
−0.02905 σb̂2

0.02060

Indirect self-tuner without process zero
cancellation (non-minimum phase plant)

µâ1 −0.00957 σâ1 0.16784
µâ2 0.051825 σâ2 0.37542
µb̂1

−0.22845 σb̂1
1.1204

µb̂2
0.42768 σb̂2

1.9589

Direct self-tuner with filtering (all process
zeros cancelled)

µ R̂1
R0

0.001976 σ R̂1
R0

0.06214

µ Ŝ0
R0

−0.03805 σ Ŝ0
R0

0.66009

µ T̂0
R0

−0.03052 σ T̂0
R0

0.6132

µ Ŝ1
R0

0.039206 σ Ŝ1
R0

0.68119

Deterministic artificial intelligence

µâ1 −0.03256 σâ1 0.20615
µâ2 0.019014 σâ2 0.10641
µb̂1

0.19678 σb̂1
0.00019

µb̂2
0.1974 σb̂2

0.00627
1 Estimation error comparison of proposed deterministic artificial intelligence (D.A.I.) method to formerly compared methods in [11].



Appl. Sci. 2021, 11, 2144 9 of 13

3.6. Persistent Excitation

In order to contemplate whether relative performances were attributable to algorithm
topology or the nature of the method to take advantage of parameter convergence, persis-
tent excitation is briefly discussed in two theorems. These are compiled here to aid readers
by assembling the disparate parts of the theorems into a few lines, as opposed to leaving
them spread across many pages (particularly with respect to the proofs).

Theorem 1. Taken from [8] (p. 64)—Persistent excitation: A signal u is called persistently exciting
of order n if the limits (Equation (13)) and if the matrix Cn given by Equation (12) is positive
definite, where no mean value is included in the definition of empirical covariance c(k). Estimation is
consistent and variance of the estimates goes to zero as 1/t if the input signal is persistently exciting
of order n.

Cn = lim
t→∞

1
t

ΦTΦ =


c(0) c(1) · · · c(n− 1)
c(1) c(0) · · · c(n− 2)

...
... · · ·

...
c(n− 1) c(n− 2) · · · c(0)

 (12)

c(k) = lim
t→∞

1
t

t

∑
i=1

u(i)u(i− k) (13)

An alternative description of persistent excitation follows. A signal u is said to be
persistently exciting of order n if for every t there exists an integer m such that Equa-
tion (14) holds.

ρi I >
t+m

∑
k=t

ϕ(k)ϕT(k) > ρi I (14)

where ρ1, ρ2 > 0 and the vector ρ(t) is given by Equation (15) permitting Equation (12) to
be expressed as Equation (16).

ϕ(t) ≡
[

u(t− 1) u(t− 2) · · · u(t− n)
]

(15)

Cn = lim
t→∞

1
t

t

∑
k=1

ϕ(k)ϕT(k) (16)

Proof of Theorem 1 ([8]). Assembled from pages 42, 48, and 65 if the parameter θ is chosen

to minimize the least squares loss function 1
2

t
∑

i=1

(
y(i)− ϕT(i)θ

)2, parameter estimates θ̂ are

such that Equation (17) holds. �

ΦTΦθ̂ = ΦTY (17)

If matrix ΦTΦ is nonsingular, the minimum is unique and given by θ̂∗ =
(

ΦTΦ
)−1

ΦTY
(also known as the pseudo-inverse solution). Assuming data is generated by an approxi-
mated system, as in equation (18), plus independent, random noise or errors e(i) with zero
mean and variance σ2, the estimates are unbiased and converge to the true parameter value
as the number of observations increases infinity, per Theorem 2.2 in [8] (p. 48).

y(i) = ϕT(i)θ0 + e(i) (18)
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Theorem 2 ([8]). Applied to this research theorem and proof as taken from p. 65: The signal u in
Equation (13) is persistently exciting of order n if and only if Equation (19) holds for all nonzero
polynomials A of degree n-1 or less.

Proof of Theorem 2. Where Cn is defined by Equation (12) and polynomial A(q) defined by
Equation (19), an uncomplicated calculation shows Equation (20) is true; if Cn is positive
definite, the right-hand side and left-hand side of equation (12) are positive for all a. �

A(q) = a0qn−1 + a1qn−2 + · · ·+ an−1 (19)

U = lim
t→∞

1
t

t

∑
k=1

(A(q)u(k))2 > 0 (20)

For periodic signals u(t) of period n, it follows that (qn − 1)u(t) = 0, thus the signal
can at most be persistently exciting of order n, the period.

3.7. Trajectory Tracking Performance Comparison

This section assembles the target tracking performances on a single multi-plot to
bestow qualitative indications of relative superiority of approaches in direct comparison.
Figure 9—with corresponding figures of merit in Table 2—illustrates that all methods have
an initial transient associated with both the initial conditions and the initial discontinuous
step to initiate the square wave. Indirect self-tuner without process zero cancellation
(minimum phase plant) peaks around 1.5 while deterministic artificial intelligence peaks
around 3.0. Meanwhile, both remaining methods begin with much larger transients. At
each switch of the square wave, these two same methods have nearly indistinguishable
performances, while slightly more overshoot is qualitatively visible for the indirect self-
tuner without process zero cancellation (minimum phase plant). It is noteworthy that after
the initial startup transient, deterministic artificial intelligence appears to follow the square
wave without noticeable overshoot or settling.
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Figure 9. Response comparison with corresponding results in Table 2. The solid (thin) black line is
the commanded square wave trajectory. Roughly coincident with this commanded trajectory (after
the initial transient) appears the blue-dashed line, representing the response of deterministic artificial
intelligence. The red-dotted line represents the indirect self-tuner without process zero cancellation
(minimum phase plant). Indirect self-tuner without process zero cancellation (non-minimum phase
plant) is represented by the dashed-green line, while the solid (thick)-black line representing direct
self-tuner with filtering (all process zeros cancelled).
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Table 2. Tracking errors‘ figures of merit (means and standard deviations) for each technique.

Method
Tracking Error 1

Mean, µ Standard Deviation, σ

Indirect self-tuner without process zero cancellation (minimum phase plant) 0.023534 0.58929
Indirect self-tuner without process zero cancellation (non-minimum phase plant) 23.2272 109.7158

Direct self-tuner with filtering (all process zeros cancelled) −0.35445 2.9984 1

Deterministic artificial intelligence (D.A.I.) −0.012239 0.1895
1 Tracking error comparison of proposed D.A.I. method to formerly compared methods in [11].

Table 2 lists figures of merit for trajectory tracking, corresponding to the results in
Figure 9. The minimum mean and standard deviation of tracking errors are highlighted
with bold font indicating that deterministic artificial intelligence was superior in both
categories, while very similar mean error (alone) was achieved by the indirect self-tuner
without process zero cancellation (minimum phase plant).

4. Discussion

Formerly, the indirect self-tuner without process zero cancellation for minimum phase
plants had superior performance (measured by mean and standard deviation) compared to
the three other methods investigated, although a notable mention must go to the direct
self-tuner with filtering where all process zeros are cancelled. This research qualitatively
reveals deterministic artificial intelligence produces superior performance categorized by
the second largest initial transient, but the transient was not repeated with each switch
of the square wave like all other methods investigated. The indirect self-tuner without
process zero cancellation (minimum phase plant) yielded a smaller initial transient, but the
transient reoccurred with each switch of the square wave.

This research quantitatively reveals that deterministic artificial intelligence yields 4.8%
lower mean and 211% lower standard deviation of tracking errors as compared to the
second-best method investigated (indirect self-tuner without process zero cancellation
and minimum phase plant). The improved performance cannot be attributed to superior
estimation. Coefficient estimation was merely on par with the best alternative methods
(some coefficients were estimated more accurately, others less accurately). Instead, the
superior performance must be attributed to the method itself.

Considering the demonstrated ability to follow a challenging square wave closely
in steady-state without repeated overshoots and settling after switching, future research
should focus on elimination of the sole transient (on initial startup) to further improve
results. Additional future research should include evaluation of the limits of uncertainty
that can be autonomously counted by deterministic artificial intelligence (D.A.I.). Like
the nonlinear adaptive control methods, D.A.I. is structured precisely to modify behavior
in response to uncertainty and/or changes in operating conditions. Therefore, a direct
comparison of each method’s ability to counter these deleterious effects would be very
interesting research.
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