Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = pestivirus F

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6349 KiB  
Article
Isolation and Characterization of a Porcine Getah Virus Strain from Sichuan Province
by Lina Shao, Mincai Nie, Baoling Liu, Fengqin Li, Tong Xu, Lei Xu, Lishuang Deng, Hanyu Li, Lei Zhao, Youyou Li, Leyi Zhang, Yixin Yan, Zhiwen Xu and Ling Zhu
Vet. Sci. 2025, 12(3), 276; https://doi.org/10.3390/vetsci12030276 - 15 Mar 2025
Viewed by 972
Abstract
Following its initial documented emergence in Hunan’s swine facilities in 2017, GETV has inflicted considerable financial damage upon China’s pork production sector. Beyond its impact on swine, GETV also poses a potential risk to other animal species and public health, primarily due to [...] Read more.
Following its initial documented emergence in Hunan’s swine facilities in 2017, GETV has inflicted considerable financial damage upon China’s pork production sector. Beyond its impact on swine, GETV also poses a potential risk to other animal species and public health, primarily due to its mosquito-borne transmission. Between September 2020 and May 2021, a GETV outbreak occurred on a commercial swine farm in Sichuan Province, where affected animals exhibited movement disorders, neurological symptoms, and mild diarrhea, with severe cases resulting in mortality. To elucidate the genetic characteristics and transmission dynamics of the virus, a comprehensive investigation of this outbreak was conducted. Clinical samples from diseased or deceased swine were collected and analyzed by PCR, confirming the presence of GETV infection. Additionally, differential diagnostic assays were performed for other common swine pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV), pseudorabies virus (PRV), classical swine fever virus (CSFV), and atypical porcine pestivirus (APPV). All tests yielded negative results, confirming GETV as the sole etiological agent of the outbreak. The GETV-positive samples were inoculated into BHK-21 cells, leading to the isolation of a GETV strain (SC202009). Whole-genome sequence analysis revealed that SC202009 belongs to the GIII genotype of GETV, with a nucleotide sequence identity ranging from 95.1% to 99.8% compared to reference sequences in GenBank. This high level of sequence identity suggests that SC202009 is closely related to other circulating strains in the region, indicating potential local transmission networks and endemic viral circulation. The nucleotide sequence identity of the E2 gene ranged from 94.2% to 99.6%, while the E2 protein amino acid sequence identity ranged from 97.2% to 99.5%. Phylogenetic analysis further indicated that SC202009 is genetically distant from the original Malaysian prototype strain (MM2021) but shares high sequence identity with several strains isolated in Sichuan Province, including SC266, SC201807, and SC483. Notably, NMJA_F2_18-8L-NH-Cxp-Y-1-1 was isolated from Culex pipiens, suggesting a mosquito-borne transmission route. These findings provide novel insights into the regional dissemination patterns and genetic diversity of GETV in China. These results also highlight the importance of the continuous surveillance of viral genetic variations and the elucidation of transmission dynamics to develop effective control strategies and mitigate potential public health risks. Future studies should focus on the ecological and environmental factors influencing GETV transmission, particularly the role of mosquito vectors in cross-species viral spread, to enhance targeted prevention and control measures for this emerging arboviral threat. Full article
Show Figures

Figure 1

16 pages, 1327 KiB  
Article
Bungowannah Pestivirus Chimeras as Novel Double Marker Vaccine Strategy against Bovine Viral Diarrhea Virus
by Susanne Koethe, Patricia König, Kerstin Wernike, Jana Schulz, Ilona Reimann and Martin Beer
Vaccines 2022, 10(1), 88; https://doi.org/10.3390/vaccines10010088 - 7 Jan 2022
Cited by 5 | Viewed by 2951
Abstract
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects [...] Read more.
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea/Mucosal Disease)
Show Figures

Figure 1

23 pages, 2390 KiB  
Article
A Synthetic Modified Live Chimeric Marker Vaccine against BVDV-1 and BVDV-2
by Susanne Koethe, Patricia König, Kerstin Wernike, Florian Pfaff, Jana Schulz, Ilona Reimann, Birgit Makoschey and Martin Beer
Vaccines 2020, 8(4), 577; https://doi.org/10.3390/vaccines8040577 - 2 Oct 2020
Cited by 9 | Viewed by 4976
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For [...] Read more.
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For economic as well as for animal health reasons, an increasing number of national BVDV control programs were recently implemented. The main focus lies on the detection and removal of persistently infected cattle. The application of efficient marker or DIVA (differentiation of infected from vaccinated animals) vaccines would be beneficial for the eradication success in regions with a high BVDV prevalence to prevent fetal infection and it would allow serological monitoring of the BVDV status also in vaccinated farms. Therefore, a marker vaccine based on the cytopathic (cp) BVDV-1b strain CP7 was constructed as a synthetic backbone (BVDV-1b_synCP7). For serological discrimination of vaccinated from infected animals, the viral protein Erns was substituted by the heterologous Erns of Bungowannah virus (BuPV, species Pestivirus F). In addition, the vaccines were attenuated by a deletion within the type I interferon inhibitor Npro protein encoding sequence. The BVDV-2 vaccine candidate is based on the genetic sequence of the glycoproteins E1 and E2 of BVDV-2 strain CS8644 (CS), which were introduced into the backbone of BVDV-1b_synCP7_ΔNpro_Erns Bungo in substitution of the homologous glycoproteins. Vaccine virus recovery resulted in infectious cytopathic virus chimera that grew to titers of up to 106 TCID50/mL. Both synthetic chimera BVDV-1b_synCP7_ΔNpro_Erns Bungo and BVDV-1b_synCP7_ΔNpro_Erns Bungo_E1E2 BVDV-2 CS were avirulent in cattle, provided a high level of protection in immunization and challenge experiments against both BVDV species and allowed differentiation of infected from vaccinated cattle. Our study presents the first report on an efficient BVDV-1 and -2 modified live marker vaccine candidate and the accompanying commercially available serological marker ELISA system. Full article
(This article belongs to the Special Issue Advances in Vaccine Development and Immunotherapies)
Show Figures

Figure 1

11 pages, 218 KiB  
Article
Infection of Ruminants, Including Pregnant Cattle, with Bungowannah Virus
by Andrew J. Read, Deborah S. Finlaison and Peter D. Kirkland
Viruses 2020, 12(6), 690; https://doi.org/10.3390/v12060690 - 26 Jun 2020
Cited by 2 | Viewed by 2711
Abstract
Bungowannah virus is a pestivirus known to cause reproductive losses in pigs. The virus has not been found in other species, nor is it known if it has the capacity to cause disease in other animals. Eight sheep, eight calves and seven pregnant [...] Read more.
Bungowannah virus is a pestivirus known to cause reproductive losses in pigs. The virus has not been found in other species, nor is it known if it has the capacity to cause disease in other animals. Eight sheep, eight calves and seven pregnant cows were experimentally infected with Bungowannah virus. It was found that sheep and calves could be infected. Furthermore, it was shown that the virus is able to cross the bovine placenta and cause infection of the foetus. These findings demonstrate the potential for species other than pigs to become infected with Bungowannah virus and the need to prevent them from becoming infected. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Virus and Related Pestiviruses)
16 pages, 2261 KiB  
Article
Quinolinecarboxamides Inhibit the Replication of the Bovine Viral Diarrhea Virus by Targeting a Hot Spot for the Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase
by Simone Musiu, Yunierkis Perez Castillo, Alexandra Muigg, Gerhard Pürstinger, Pieter Leyssen, Mathy Froeyen, Johan Neyts and Jan Paeshuyse
Molecules 2020, 25(6), 1283; https://doi.org/10.3390/molecules25061283 - 12 Mar 2020
Cited by 8 | Viewed by 3156
Abstract
The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro [...] Read more.
The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro bovine viral diarrhea virus (BVDV) replication, i.e., TO505-6180/CSFCI (average EC50 = 0.07 µM, SD = 0.02 µM, CC50 > 100 µM) and TO502-2403/CSFCII (average EC50 = 0.2 µM, SD = 0.06 µM, CC50 > 100 µM). The initial antiviral activity observed for both hits against BVDV was corroborated by measuring the inhibitory effect on viral RNA synthesis and the production of infectious virus. Modification of the substituents on the quinolinecarboxamide scaffold resulted in analogues that proved about 7-fold more potent (average EC50 = 0.03 with a SD = 0.01 µM) and that were devoid of cellular toxicity, for the concentration range tested (SI = 3333). CSFCII resistant BVDV variants were selected and were found to carry the F224P mutation in the viral RNA-dependent RNA polymerase (RdRp), whereas CSFCI resistant BVDV carried two mutations in the same region of the RdRp, i.e., N264D and F224Y. Likewise, molecular modeling revealed that F224P/Y and N264D are located in a small cavity near the fingertip domain of the pestivirus polymerase. CSFC-resistant BVDV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110, LZ37, and BBP) that are known to target the same region of the RdRp. CSFC analogues did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). CSFC analogues likely interact with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110, LZ37, and BBP. This indicates that this region is a “hot spot” for the inhibition of pestivirus replication. Full article
(This article belongs to the Special Issue Antiviral Agents)
Show Figures

Figure 1

11 pages, 2936 KiB  
Article
Seroprevalences of Newly Discovered Porcine Pestiviruses in German Pig Farms
by Anna Michelitsch, Anja Dalmann, Kerstin Wernike, Ilona Reimann and Martin Beer
Vet. Sci. 2019, 6(4), 86; https://doi.org/10.3390/vetsci6040086 - 25 Oct 2019
Cited by 17 | Viewed by 4846
Abstract
Several novel porcine pestiviruses that are linked to disease outbreaks in commercial pig farms were discovered during recent years. Bungowannah pestivirus (BuPV; new species Pestivirus F) causes sudden death in young pigs, but has only ever been isolated in the Australian region [...] Read more.
Several novel porcine pestiviruses that are linked to disease outbreaks in commercial pig farms were discovered during recent years. Bungowannah pestivirus (BuPV; new species Pestivirus F) causes sudden death in young pigs, but has only ever been isolated in the Australian region Bungowannah. Atypical porcine pestivirus (APPV; new species Pestivirus K) on the other hand has been found in multiple countries worldwide and is potentially linked to congenital tremor, a disease that causes considerable production problems in pig farms. To assess the seroprevalences of both viruses in German commercial farms during the years 2009/10 and 2018, two approaches were selected. Antibodies against Pestivirus F were detected by a traditional in-house indirect immunofluorescence test against the culture-grown virus isolate, while for the detection of Pestivirus K-specific antibodies, a newly developed test system utilizing a chimeric construct of bovine viral diarrhea virus 1 (BVDV-1; species Pestivirus A) containing the E1 and E2 encoding sequences of APPV was established. A total of 1115 samples originating from 122 farms located in seven German federal states were investigated. Antibodies against Bungowannah virus could not be detected, confirming the absence of this virus in other regions than the initially affected Australian pig farm complex. In contrast, antibodies against APPV were highly prevalent throughout Germany at both investigated time points. The seroprevalence at the state level fluctuated to some degree, but the overall percentage remained stable, as is to be expected for an endemic pestivirus lacking any form of control measures. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 3057 KiB  
Review
A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family
by Jiqin Wu, Weichi Liu and Peng Gong
Int. J. Mol. Sci. 2015, 16(6), 12943-12957; https://doi.org/10.3390/ijms160612943 - 8 Jun 2015
Cited by 85 | Viewed by 9619
Abstract
RNA-dependent RNA polymerases (RdRPs) from the Flaviviridae family are representatives of viral polymerases that carry out RNA synthesis through a de novo initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical viral RdRP architecture resembling an encircled right hand [...] Read more.
RNA-dependent RNA polymerases (RdRPs) from the Flaviviridae family are representatives of viral polymerases that carry out RNA synthesis through a de novo initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical viral RdRP architecture resembling an encircled right hand with palm, fingers, and thumb domains surrounding the active site. Polymerase catalytic motifs A–E in the palm and motifs F/G in the fingers are shared by all viral RdRPs with sequence and/or structural conservations regardless of the mechanism of initiation. Different from RdRPs carrying out primer-dependent initiation, Flaviviridae and other de novo RdRPs utilize a priming element often integrated in the thumb domain to facilitate primer-independent initiation. Upon the transition to the elongation phase, this priming element needs to undergo currently unresolved conformational rearrangements to accommodate the growth of the template-product RNA duplex. In the genera of Flavivirus and Pestivirus, the polymerase module in the C-terminal part of the RdRP protein may be regulated in cis by the N-terminal region of the same polypeptide. Either being a methyltransferase in Flavivirus or a functionally unclarified module in Pestivirus, this region could play auxiliary roles for the canonical folding and/or the catalysis of the polymerase, through defined intra-molecular interactions. Full article
(This article belongs to the Special Issue Protein Crystallography in Molecular Biology 2015)
Show Figures

Figure 1

Back to TopTop