Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = periplasmic folding factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2163 KiB  
Review
SurA-like and Skp-like Proteins as Important Virulence Determinants of the Gram Negative Bacterial Pathogens
by Donata Figaj, Patrycja Ambroziak, Iga Rzepka and Joanna Skórko-Glonek
Int. J. Mol. Sci. 2023, 24(1), 295; https://doi.org/10.3390/ijms24010295 - 24 Dec 2022
Cited by 9 | Viewed by 3843
Abstract
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the [...] Read more.
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the membrane, they frequently require the assistance of chaperones. Based on the results obtained for the model bacterium Escherichia coli and related species, it is assumed that in the biogenesis of the outer membrane proteins and the periplasmic transit of secretory proteins, the SurA peptidyl–prolyl isomerase/chaperone plays a leading role, while the Skp chaperone is rather of secondary importance. However, detailed studies carried out on several other Gram-negative pathogens indicate that the importance of individual chaperones in the folding and transport processes depends on the properties of client proteins and is species-specific. Taking into account the importance of SurA functions in bacterial virulence and severity of phenotypes due to surA mutations, this folding factor is considered as a putative therapeutic target to combat microbial infections. In this review, we present recent findings regarding SurA and Skp proteins: their mechanisms of action, involvement in processes related to virulence, and perspectives to use them as therapeutic targets. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

10 pages, 1867 KiB  
Article
Structural Studies of Bypass of Forespore Protein C from Bacillus Subtilis to Reveal Its Inhibitory Molecular Mechanism for SpoIVB
by Xinyun Zhang, Gaohui Sun, Cai Yuan, Longguang Jiang and Mingdong Huang
Catalysts 2022, 12(12), 1530; https://doi.org/10.3390/catal12121530 - 28 Nov 2022
Viewed by 1682
Abstract
Activation of pro-σK processing requires a signaling protease SpoIVB that is secreted from the forespore into the space between the two cells during sporulation in Bacillus subtilis. Bypass of forespore protein C (BofC) is an inhibitor preventing the autoproteolysis of SpoIVB, [...] Read more.
Activation of pro-σK processing requires a signaling protease SpoIVB that is secreted from the forespore into the space between the two cells during sporulation in Bacillus subtilis. Bypass of forespore protein C (BofC) is an inhibitor preventing the autoproteolysis of SpoIVB, ensuring the factor σK operates regularly at the correct time during the sporulation. However, the regulatory mechanisms of BofC on pro-σK processing are still unclear, especially in the aspect of the interaction between BofC and SpoIVB. Herein, the recombinant BofC (rBofC) was expressed in the periplasm by the E. coli expression system, and crystal growth conditions were obtained and optimized. Further, the crystal structure of rBofC was determined by X-ray crystallography, which is nearly identical to the structures determined by NMR and predicted by AlphaFold. In addition, the modeled structure of the BofC–SpoIVB complex provides insights into the molecular mechanism by which domain 1 of BofC occupies the active site of the SpoIVB serine protease domain, leading to the inhibition of the catalytical activity of SpoIVB and prevention of the substrate of SpoIVB (SpoIVFA) from binding to the active site. Full article
(This article belongs to the Special Issue State-of-the-Art in Enzyme Inhibitors)
Show Figures

Figure 1

20 pages, 4828 KiB  
Article
A Hypothesis on How the Azolla Symbiosis Mitigates Nitrous Oxide Based on In Silico Analyses
by Dilantha Gunawardana and Venura Herath
J 2022, 5(1), 166-185; https://doi.org/10.3390/j5010013 - 4 Mar 2022
Cited by 1 | Viewed by 3424
Abstract
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous [...] Read more.
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous oxide production from urea and other supplements to the irrigated ecosystem, which mandates exploration since there is still no clear solution to nitrous oxide in paddy fields or in other ecosystems. Here, we propose a solution based on the evolution of a single cytochrome oxidase subunit II protein (WP_013192178.1) from the cyanobiont Trichormus azollae that we hypothesize to be able to quench nitrous oxide. First, we draw attention to a domain in the candidate protein that is emerging as a sensory periplasmic Y_Y_Y domain that is inferred to bind nitrous oxide. Secondly, we draw the phylogeny of the candidate protein showcasing the poor bootstrap support of its position in the wider clade showcasing its deviation from the core function. Thirdly, we show that the NtcA protein, the apical N-effecting transcription factor, can putatively bind to a promoter sequence of the gene coding for the candidate protein (WP_013192178.1), suggesting a function associated with heterocysts and N-metabolism. Our fourth point involves a string of histidines at the C-terminal extremity of the WP_013192178.1 protein that is missing on all other T. azollae cytochrome oxidase subunit II counterparts, suggesting that such histidines are perhaps involved in forming a Cu center. As the fifth point, we showcase a unique glycine-183 in a lengthy linker region containing multiple glycines that is absent in all proximal Nostocales cyanobacteria, which we predict to be a DNA binding residue. We propose a mechanism of action for the WP_013192178.1 protein based on our in silico analyses. In total, we hypothesize the incomplete and rapid conversion of a likely heterocystous cytochrome oxidase subunit II protein to an emerging nitrous oxide sensing/quenching subunit based on bioinformatics analyses and past literature, which can have repercussions to climate change and consequently, future human life. Full article
Show Figures

Figure 1

13 pages, 2913 KiB  
Article
Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer
by Alexandra Fischer, Isis Wolf, Hendrik Fuchs, Anie Priscilla Masilamani and Philipp Wolf
Toxins 2020, 12(12), 753; https://doi.org/10.3390/toxins12120753 - 28 Nov 2020
Cited by 16 | Viewed by 4359
Abstract
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the [...] Read more.
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa. Full article
(This article belongs to the Special Issue Toxin and Immunotoxin Based Therapeutic Approaches)
Show Figures

Figure 1

Back to TopTop