Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = pediatric neural degeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1202 KiB  
Review
Study of lncRNAs in Pediatric Neurological Diseases: Methods, Analysis of the State-of-Art and Possible Therapeutic Implications
by Cecilia Pandini, Federica Rey, Cristina Cereda, Stephana Carelli and Paolo Gandellini
Pharmaceuticals 2023, 16(11), 1616; https://doi.org/10.3390/ph16111616 - 16 Nov 2023
Cited by 2 | Viewed by 1867
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, and their roles in pediatric neurological diseases are increasingly being explored. This review provides an overview of lncRNA implications in the central nervous system, both in its physiological state and [...] Read more.
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, and their roles in pediatric neurological diseases are increasingly being explored. This review provides an overview of lncRNA implications in the central nervous system, both in its physiological state and when a pathological condition is present. We describe the role of lncRNAs in neural development, highlighting their significance in processes such as neural stem cell proliferation, differentiation, and synaptogenesis. Dysregulation of specific lncRNAs is associated with multiple pediatric neurological diseases, such as neurodevelopmental or neurodegenerative disorders and brain tumors. The collected evidence indicates that there is a need for further research to uncover the full spectrum of lncRNA involvement in pediatric neurological diseases and brain tumors. While challenges exist, ongoing advancements in technology and our understanding of lncRNA biology offer hope for future breakthroughs in the field of pediatric neurology, leveraging lncRNAs as potential therapeutic targets and biomarkers. Full article
Show Figures

Figure 1

23 pages, 3766 KiB  
Article
Expression Signature of lncRNAs and mRNAs in Sevoflurane-Induced Mouse Brain Injury: Implication of Involvement of Wide Molecular Networks and Pathways
by Congshan Jiang, Thiago Arzua, Yasheng Yan and Xiaowen Bai
Int. J. Mol. Sci. 2021, 22(3), 1389; https://doi.org/10.3390/ijms22031389 - 30 Jan 2021
Cited by 9 | Viewed by 2890
Abstract
Sevoflurane, one of the most commonly used pediatric anesthetics, was found to cause developmental neurotoxicity. To understand specific risk groups and develop countermeasures, a better understanding of its mechanisms is needed. We hypothesize that, as in many other brain degeneration pathways, long non-coding [...] Read more.
Sevoflurane, one of the most commonly used pediatric anesthetics, was found to cause developmental neurotoxicity. To understand specific risk groups and develop countermeasures, a better understanding of its mechanisms is needed. We hypothesize that, as in many other brain degeneration pathways, long non-coding RNAs (lncRNAs) are involved in the sevoflurane-induced neurotoxicity. Postnatal day 7 (PD7) mice were exposed to 3% sevoflurane for 6 h. To quantify neurotoxicity in these mice, we (1) detected neural apoptosis through analysis of caspase 3 expression level and activity and (2) assessed long-term learning ability via the Morris water maze at PD60. To elucidate specific mechanisms, profiles of 27,427 lncRNAs and 18,855 messenger RNAs (mRNAs) in mouse hippocampi were analyzed using microarray assays. Sevoflurane-induced abnormal lncRNA and mRNA expression-associated function pathways were predicted by bioinformatic analysis. We found that sevoflurane induced significant neurotoxicity, causing acute neuroapoptosis and abnormal expression of 148 mRNAs and 301 lncRNAs on PD7 in mouse hippocampus. Additionally, exposed mice exhibited impaired memory on PD60. Bioinformatic analysis predicted that the dysregulated mRNAs, which are highly correlated with their co-expressed dysregulated lncRNAs, might be involved in 34 neurodegenerative signaling pathways (e.g., brain cell apoptosis and intellectual developmental disorder). Our study reveals for the first time that neonatal exposure to 3% sevoflurane induces abnormal lncRNA and mRNA expression profiles. These dysregulated lncRNAs/mRNAs form wide molecular networks that might contribute to various functional neurological disease pathways in the hippocampus, resulting in the observed acute apoptosis and impaired long-term memory. Full article
(This article belongs to the Special Issue Functional Modification of Neuronal Networks)
Show Figures

Figure 1

Back to TopTop