Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = panchromatic spectral decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4430 KB  
Article
A Multispectral and Panchromatic Images Fusion Method Based on Weighted Mean Curvature Filter Decomposition
by Yuetao Pan, Danfeng Liu, Liguo Wang, Shishuai Xing and Jón Atli Benediktsson
Appl. Sci. 2022, 12(17), 8767; https://doi.org/10.3390/app12178767 - 31 Aug 2022
Cited by 4 | Viewed by 2510
Abstract
Since the hardware limitations of satellite sensors, the spatial resolution of multispectral (MS) images is still not consistent with the panchromatic (PAN) images. It is especially important to obtain the MS images with high spatial resolution in the field of remote sensing image [...] Read more.
Since the hardware limitations of satellite sensors, the spatial resolution of multispectral (MS) images is still not consistent with the panchromatic (PAN) images. It is especially important to obtain the MS images with high spatial resolution in the field of remote sensing image fusion. In order to obtain the MS images with high spatial and spectral resolutions, a novel MS and PAN images fusion method based on weighted mean curvature filter (WMCF) decomposition is proposed in this paper. Firstly, a weighted local spatial frequency-based (WLSF) fusion method is utilized to fuse all the bands of a MS image to generate an intensity component IC. In accordance with an image matting model, IC is taken as the original α channel for spectral estimation to obtain a foreground and background images. Secondly, a PAN image is decomposed into a small-scale (SS), large-scale (LS) and basic images by weighted mean curvature filter (WMCF) and Gaussian filter (GF). The multi-scale morphological detail measure (MSMDM) value is used as the inputs of the Parameters Automatic Calculation Pulse Coupled Neural Network (PAC-PCNN) model. With the MSMDM-guided PAC-PCNN model, the basic image and IC are effectively fused. The fused image as well as the LS and SS images are linearly combined together to construct the last α channel. Finally, in accordance with an image matting model, a foreground image, a background image and the last α channel are reconstructed to acquire the final fused image. The experimental results on four image pairs show that the proposed method achieves superior results in terms of subjective and objective evaluations. In particular, the proposed method can fuse MS and PAN images with different spatial and spectral resolutions in a higher operational efficiency, which is an effective means to obtain higher spatial and spectral resolution images. Full article
(This article belongs to the Special Issue Intelligent Computing and Remote Sensing)
Show Figures

Figure 1

13 pages, 2077 KB  
Article
Image Fusion for High-Resolution Optical Satellites Based on Panchromatic Spectral Decomposition
by Luxiao He, Mi Wang, Ying Zhu, Xueli Chang and Xiaoxiao Feng
Sensors 2019, 19(11), 2619; https://doi.org/10.3390/s19112619 - 9 Jun 2019
Cited by 4 | Viewed by 3603
Abstract
Ratio transformation methods are widely used for image fusion of high-resolution optical satellites. The premise for the use the ratio transformation is that there is a zero-bias linear relationship between the panchromatic band and the corresponding multi-spectral bands. However, there are bias terms [...] Read more.
Ratio transformation methods are widely used for image fusion of high-resolution optical satellites. The premise for the use the ratio transformation is that there is a zero-bias linear relationship between the panchromatic band and the corresponding multi-spectral bands. However, there are bias terms and residual terms with large values in reality, depending on the sensors, the response spectral ranges, and the land-cover types. To address this problem, this paper proposes a panchromatic and multi-spectral image fusion method based on the panchromatic spectral decomposition (PSD). The low-resolution panchromatic and multi-spectral images are used to solve the proportionality coefficients, the bias coefficients, and the residual matrixes. These coefficients are substituted into the high-resolution panchromatic band and decompose it into the high-resolution multi-spectral bands. The experiments show that this method can make the fused image acquire high color fidelity and sharpness, it is robust to different sensors and features, and it can be applied to the panchromatic and multi-spectral fusion of high-resolution optical satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

28 pages, 8667 KB  
Article
Pansharpening with a Gradient Domain GIF Based on NSST
by Jiao Jiao and Lingda Wu
Electronics 2019, 8(2), 229; https://doi.org/10.3390/electronics8020229 - 18 Feb 2019
Cited by 6 | Viewed by 3917
Abstract
In order to improve the fusion quality of multispectral (MS) and panchromatic (PAN) images, a pansharpening method with a gradient domain guided image filter (GIF) that is based on non-subsampled shearlet transform (NSST) is proposed. First, multi-scale decomposition of MS and PAN images [...] Read more.
In order to improve the fusion quality of multispectral (MS) and panchromatic (PAN) images, a pansharpening method with a gradient domain guided image filter (GIF) that is based on non-subsampled shearlet transform (NSST) is proposed. First, multi-scale decomposition of MS and PAN images is performed by NSST. Second, different fusion rules are designed for high- and low-frequency coefficients. A fusion rule that is based on morphological filter-based intensity modulation (MFIM) technology is proposed for the low-frequency coefficients, and the edge refinement is carried out based on a gradient domain GIF to obtain the fused low-frequency coefficients. For the high-frequency coefficients, a fusion rule based on an improved pulse coupled neural network (PCNN) is adopted. The gradient domain GIF optimizes the firing map of the PCNN model, and then the fusion decision map is calculated to guide the fusion of the high-frequency coefficients. Finally, the fused high- and low-frequency coefficients are reconstructed with inverse NSST to obtain the fusion image. The proposed method was tested using the WorldView-2 and QuickBird data sets; the subjective visual effects and objective evaluation demonstrate that the proposed method is superior to the state-of-the-art pansharpening methods, and it can efficiently improve the spatial quality and spectral maintenance. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

12 pages, 683 KB  
Article
Scaling-up Transformation of Multisensor Images with Multiple Resolutions
by Shaohui Chen, Renhua Zhang, Hongbo Su, Jing Tian and Jun Xia
Sensors 2009, 9(3), 1370-1381; https://doi.org/10.3390/s90301370 - 26 Feb 2009
Cited by 15 | Viewed by 12489
Abstract
For scaling up low resolution multispectral images (LRMIs) with high resolution panchromatic image (HRPI), intensity-hue-saturation (IHS) can produce satisfactory spatial enhancement but usually introduces spectral distortion in the fused high resolution multispectral images (HRMIs). In this paper, to minimize this problem, we present [...] Read more.
For scaling up low resolution multispectral images (LRMIs) with high resolution panchromatic image (HRPI), intensity-hue-saturation (IHS) can produce satisfactory spatial enhancement but usually introduces spectral distortion in the fused high resolution multispectral images (HRMIs). In this paper, to minimize this problem, we present a generalized intensity modulation (GIM) by extending the IHS transform to an arbitrary number of LRMIs, which uses the information of the spectral response functions (SRFs) of the multispectral and panchromatic sensors. Before modulation, the generalized intensity is enhanced by injecting details extracted from the HRPI by means of empirical mode decomposition. After the enhanced generalized intensity is substituted for the old one, the HRMIs are obtained through the GIM. Quickbird images are used to illustrate the superiority of this proposed method. Extensive comparison results based on visual analysis and Wald’s protocol demonstrate that the proposed method is more encouraging for scaling up the LRMIs with the HRPI spectrally and spatially than the tested fusion methods. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Back to TopTop