Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = oyster vessel behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 4172 KB  
Article
A Novel Nature-Inspired Optimization Algorithm: Grizzly Bear Fat Increase Optimizer
by Moslem Dehghani, Mokhtar Aly, Jose Rodriguez, Ehsan Sheybani and Giti Javidi
Biomimetics 2025, 10(6), 379; https://doi.org/10.3390/biomimetics10060379 - 7 Jun 2025
Viewed by 783
Abstract
This paper introduces a novel nature-inspired optimization algorithm called the Grizzly Bear Fat Increase Optimizer (GBFIO). The GBFIO algorithm mimics the natural behavior of grizzly bears as they accumulate body fat in preparation for winter, drawing on their strategies of hunting, fishing, and [...] Read more.
This paper introduces a novel nature-inspired optimization algorithm called the Grizzly Bear Fat Increase Optimizer (GBFIO). The GBFIO algorithm mimics the natural behavior of grizzly bears as they accumulate body fat in preparation for winter, drawing on their strategies of hunting, fishing, and eating grass, honey, etc. Hence, three mathematical steps are modeled and considered in the GBFIO algorithm to solve the optimization problem: (1) finding food sources (e.g., vegetables, fruits, honey, oysters), based on past experiences and olfactory cues; (2) hunting animals and protecting offspring from predators; and (3) fishing. Thirty-one standard benchmark functions and thirty CEC2017 test benchmark functions are applied to evaluate the performance of the GBFIO, such as unimodal, multimodal of high dimensional, fixed dimensional multimodal, and also the rotated and shifted benchmark functions. In addition, four constrained engineering design problems such as tension/compression spring design, welded beam design, pressure vessel design, and speed reducer design problems have been considered to show the efficiency of the proposed GBFIO algorithm in solving constrained problems. The GBFIO can successfully solve diverse kinds of optimization problems, as shown in the results of optimization of objective functions, especially in high dimension objective functions in comparison to other algorithms. Additionally, the performance of the GBFIO algorithm has been compared with the ability and efficiency of other popular optimization algorithms in finding the solutions. In comparison to other optimization algorithms, the GBFIO algorithm offers yields superior or competitive quasi-optimal solutions relative to other well-known optimization algorithms. Full article
Show Figures

Figure 1

11 pages, 7954 KB  
Article
A Machine Learning Approach to Determine Oyster Vessel Behavior
by Devin Joseph Frey, Avdesh Mishra, Md Tamjidul Hoque, Mahdi Abdelguerfi and Thomas Soniat
Mach. Learn. Knowl. Extr. 2019, 1(1), 64-74; https://doi.org/10.3390/make1010004 - 31 Mar 2018
Cited by 7 | Viewed by 6249
Abstract
In this work, we address a multi-class classification task of oyster vessel behaviors determination by classifying them into four different classes: fishing, traveling, poling (exploring) and docked (anchored). The main purpose of this work is to automate the oyster vessel behaviors determination task [...] Read more.
In this work, we address a multi-class classification task of oyster vessel behaviors determination by classifying them into four different classes: fishing, traveling, poling (exploring) and docked (anchored). The main purpose of this work is to automate the oyster vessel behaviors determination task using machine learning and to explore different techniques to improve the accuracy of the oyster vessel behavior prediction problem. To employ machine learning technique, two important descriptors: speed and net speed, are calculated from the trajectory data, recorded by a satellite communication system (Vessel Management System, VMS) attached to the vessels fishing on the public oyster grounds of Louisiana. We constructed a support vector machine (SVM) based method which employs Radial Basis Function (RBF) as a kernel to accurately predict the behavior of oyster vessels. Several validation and parameter optimization techniques were used to improve the accuracy of the SVM classifier. A total 93% of the trajectory data from a July 2013 to August 2014 dataset consisting of 612,700 samples for which the ground truth can be obtained using rule-based classifier is used for validation and independent testing of our method. The results show that the proposed SVM based method is able to correctly classify 99.99% of 612,700 samples using the 10-fold cross validation. Furthermore, we achieved a precision of 1.00, recall of 1.00, F1-score of 1.00 and a test accuracy of 99.99%, while performing an independent test using a subset of 93% of the dataset, which consists of 31,418 points. Full article
Show Figures

Figure 1

Back to TopTop