Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = overtopping prevention structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5613 KiB  
Article
Modelling of Bottom Shear Stresses in Scoured Hole Formed by Nappe Flow During Levee Overtopping
by Yoshiya Igarashi and Norio Tanaka
GeoHazards 2025, 6(1), 11; https://doi.org/10.3390/geohazards6010011 - 1 Mar 2025
Cited by 1 | Viewed by 811
Abstract
Increases in flood magnitude due to climate change increase the necessity of resilient river levees to prevent the breaching that can contribute to reduced flood inundation volume even when overtopping from a levee occurs. When a levee is composed of cohesive soil and [...] Read more.
Increases in flood magnitude due to climate change increase the necessity of resilient river levees to prevent the breaching that can contribute to reduced flood inundation volume even when overtopping from a levee occurs. When a levee is composed of cohesive soil and the levee crest is paved, overtopping can lead to a waterfall-like nappe flow due to the erosion of the downstream slope of a levee. This flow subsequently expands the scour hole and increases the risk of levee failure. Although some models of scour hole expansion due to nappe flow were proposed, flow structures in the scour hole were not adequately taken into account. This study aimed to clarify the flow structure, including formation of vortices in the scour hole, by conducting flow visualization experiments and three-dimensional numerical analyses. After clarifying the flow structure, this study proposed a simplified model to calculate the bottom shear stress in a scour hole on the levee side. The accuracy of the estimated bottom shear stress was verified by comparing the results with a three-dimensional numerical analysis. This proposed method can predict further erosion of a scour hole. Full article
Show Figures

Figure 1

22 pages, 7491 KiB  
Article
Computational Study of Overtopping Phenomenon over Cylindrical Structures Including Mitigation Structures
by Gustavo A. Esteban, Xabier Ezkurra, Iñigo Bidaguren, Iñigo Albaina and Urko Izquierdo
J. Mar. Sci. Eng. 2024, 12(8), 1441; https://doi.org/10.3390/jmse12081441 - 20 Aug 2024
Viewed by 1387
Abstract
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this [...] Read more.
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this phenomenon has been extensively reported for linear coastal defences like seawalls. However, no referenced study has treated the case of cylindrical structures typical of these applications to a similar extent. The aim of the present study is to define an empirical expression that portrays the relative overtopping rate over a vertical cylinder including a variety of bull-nose type mitigation structures to reduce the overtopping rate in the same fashion as for the linear structures characteristic of shoreline defences. Hydrodynamic interaction was studied by means of an experimentally validated numerical model applied to a non-impulsive regular wave regime and the results were compared with the case of a plain cylinder to evaluate the expected improvement in the overtopping performance. Four different types of parapets were added to the crest of the base cylinder, with different parapet height and horizontal extension, to see the influence of the geometry on the mitigation efficiency. Computational results confirmed the effectivity of the proposed solution in the overtopping reduction, though the singularity of each parapet geometry did not lead to an outstanding difference between the analysed options. Consequently, the resulting overtopping decrease in all the proposed geometries could be modelled by a unique specific Weibull-type function of the relative freeboard, which governed the phenomenon, showing a net reduction in comparison with the cylinder without the geometric modifications. In addition, the relationship between the reduced relative overtopping rate and the mean flow thickness over the vertical cylinder crest was studied as an alternative methodology to assess the potential damage caused by overtopping in real structures without complex volumetric measurements. The collection of computational results was fitted to a useful function, allowing for the definition of the overtopping discharge once the mean flow thickness was known. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 5936 KiB  
Article
Experimental and Seepage Analysis of Gabion Retaining Wall Structure for Preventing Overtopping in Reservoir Dams
by Dal-Won Lee, Ji-Sang Han, Cheol-Han Kim, Jung-Hyun Ryu, Hyo-Sung Song and Young-Hak Lee
Appl. Sci. 2024, 14(10), 4041; https://doi.org/10.3390/app14104041 - 9 May 2024
Cited by 1 | Viewed by 3110
Abstract
Recently, heavy rains caused by climate change have resulted in dam failures due to overtopping. This study presents a design method aiming to prevent overtopping failures by applying gabion retaining walls at the dam crest. Simulations, experiments, and measurements were conducted to evaluate [...] Read more.
Recently, heavy rains caused by climate change have resulted in dam failures due to overtopping. This study presents a design method aiming to prevent overtopping failures by applying gabion retaining walls at the dam crest. Simulations, experiments, and measurements were conducted to evaluate the effectiveness of this design. The design framework aims to establish a system in which gabion retaining walls prevent overtopping when water levels exceed the crest of the dam, efficiently draining seepage water into the dam body through vertical filters. Research findings indicate that implementing dam crest core and geomembrane design effectively prevents seepage and saturation of the downstream slope during overtopping events. Notably, the reservoir dam operates in a stable manner, as seepage water passing through the dam body is directed solely to the toe drain. Overall, this design approach suggests its potential as a practical solution by significantly reducing hazards resulting from heavy rainfall. Full article
Show Figures

Figure 1

12 pages, 4330 KiB  
Article
Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet
by Young-Hak Lee, Soichiro Yamakawa, Tetsuo Tobita, Hyuk-Kee Hong, Hyo-Sung Song, Jae-Jung Kim and Dal-Won Lee
Appl. Sci. 2023, 13(10), 6347; https://doi.org/10.3390/app13106347 - 22 May 2023
Cited by 3 | Viewed by 1703
Abstract
This study examines the effectiveness of parapets in preventing overtopping failures of small-scale homogeneous reservoir dams under seismic loads. In this study, a parapet covered the entire width of the dam crest and was designed to ensure its weight is transmitted to the [...] Read more.
This study examines the effectiveness of parapets in preventing overtopping failures of small-scale homogeneous reservoir dams under seismic loads. In this study, a parapet covered the entire width of the dam crest and was designed to ensure its weight is transmitted to the dam crest. The test included four modes: initial mode, first seepage, seismic, and second seepage. The results show that without parapets the crack length and width expand significantly in the dam crest during the seismic mode, and the effect was large in the second seepage mode. The crack depth increased by 11.3–24 times during the seismic mode and expanded up to 73.3% of the dam height in the longitudinal direction along the axis of the crack formed in the dam crest during the second seepage mode. These findings suggest that the earthquake weakened the dam body, making it vulnerable to penetration. In contrast, the parapet structure effectively suppressed most of the tensile cracks by increasing the constraint force. Additionally, no crack expansion or tearing occurred during the second seepage mode post-earthquake, indicating improved seismic performance and suppression of seepage deformation. Full article
Show Figures

Figure 1

Back to TopTop