Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = orthoview

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2751 KiB  
Article
Digital Templating of Hip Arthroplasty Using Microsoft PowerPoint: A Pilot Study with Technical Details
by Yonghan Cha, Jun Young Chung, Jin-Woo Kim, Jun-Il Yoo, Woohyun Lee and Jung-Taek Kim
Bioengineering 2024, 11(4), 327; https://doi.org/10.3390/bioengineering11040327 - 28 Mar 2024
Viewed by 2447
Abstract
Templating is essential in hip arthroplasty preparation, facilitating implant size prediction and surgical rehearsal. It ensures the selection of suitable implants according to patient anatomy and disease, aiming to minimize post-operative complications. Various templating methods exist, including traditional acetate templating on both analog [...] Read more.
Templating is essential in hip arthroplasty preparation, facilitating implant size prediction and surgical rehearsal. It ensures the selection of suitable implants according to patient anatomy and disease, aiming to minimize post-operative complications. Various templating methods exist, including traditional acetate templating on both analog and digital images, alongside digital templating on digital images, which is categorized into 2D and 3D approaches. Despite the popularity of acetate templating on digital images, challenges such as the requirement for physical templates and result preservation persist. To address these limitations, digital templating with software like OrthoSize and Orthoview has been suggested, although not universally accessible. This technical note advocates for Microsoft PowerPoint as an effective alternative for 2D digital templating, highlighting its user-friendly features for image manipulation without needing specialized software. The described method involves scanning acetate templates, adjusting the images in PowerPoint 365 for size, position, and calibration on patient radiographs, and demonstrating reliability through preliminary assessments, with intraclass correlation coefficient (ICC) values indicating a high level of agreement for cup and stem size (ICC = 0.860, 0.841, respectively) but moderate for neck length (ICC = 0.592). We have introduced a method for performing 2D digital templating in the clinical field without the need for specialized software dedicated to digital templating. We believe this method significantly improves the accessibility to 2D digital templating, which was previously limited by the need for digital templating software. Additionally, it enables surgeons to easily establish arthroplasty plans and share them, overcoming the limitations of acetate templates. Full article
(This article belongs to the Special Issue Total Joint Arthroplasty: Technical Developments and Applications)
Show Figures

Figure 1

17 pages, 22674 KiB  
Article
Studies on Three-Dimensional (3D) Accuracy Optimization and Repeatability of UAV in Complex Pit-Rim Landforms As Assisted by Oblique Imaging and RTK Positioning
by Rui Bi, Shu Gan, Xiping Yuan, Raobo Li, Sha Gao, Weidong Luo and Lin Hu
Sensors 2021, 21(23), 8109; https://doi.org/10.3390/s21238109 - 4 Dec 2021
Cited by 12 | Viewed by 2611
Abstract
Unmanned Aerial Vehicles (UAVs) are a novel technology for landform investigations, monitoring, as well as evolution analyses of long−term repeated observation. However, impacted by the sophisticated topographic environment, fluctuating terrain and incomplete field observations, significant differences have been found between 3D measurement accuracy [...] Read more.
Unmanned Aerial Vehicles (UAVs) are a novel technology for landform investigations, monitoring, as well as evolution analyses of long−term repeated observation. However, impacted by the sophisticated topographic environment, fluctuating terrain and incomplete field observations, significant differences have been found between 3D measurement accuracy and the Digital Surface Model (DSM). In this study, the DJI Phantom 4 RTK UAV was adopted to capture images of complex pit-rim landforms with significant elevation undulations. A repeated observation data acquisition scheme was proposed for a small amount of oblique-view imaging, while an ortho-view observation was conducted. Subsequently, the 3D scenes and DSMs were formed by employing Structure from Motion (SfM) and Multi-View Stereo (MVS) algorithms. Moreover, a comparison and 3D measurement accuracy analysis were conducted based on the internal and external precision by exploiting checkpoint and DSM of Difference (DoD) error analysis methods. As indicated by the results, the 3D scene plane for two imaging types could reach an accuracy of centimeters, whereas the elevation accuracy of the orthophoto dataset alone could only reach the decimeters (0.3049 m). However, only 6.30% of the total image number of oblique images was required to improve the elevation accuracy by one order of magnitude (0.0942 m). (2) An insignificant variation in internal accuracy was reported in oblique imaging-assisted datasets. In particular, SfM-MVS technology exhibited high reproducibility for repeated observations. By changing the number and position of oblique images, the external precision was able to increase effectively, the elevation error distribution was improved to become more concentrated and stable. Accordingly, a repeated observation method only including a few oblique images has been proposed and demonstrated in this study, which could optimize the elevation and improve the accuracy. The research results could provide practical and effective technology reference strategies for geomorphological surveys and repeated observation analyses in sophisticated mountain environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 9427 KiB  
Article
Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool
by Maria Marsella, Carla Nardinocchi, Cristina Proietti, Leonardo Daga and Mauro Coltelli
Remote Sens. 2014, 6(12), 12166-12186; https://doi.org/10.3390/rs61212166 - 5 Dec 2014
Cited by 8 | Viewed by 7742
Abstract
In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows) and the connected deformation processes. The ability [...] Read more.
In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows) and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview) that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP) and current Digital Elevation Models (DEM) are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy. Full article
Show Figures

Graphical abstract

Back to TopTop