Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = organic thermoelectric (OTE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3621 KiB  
Article
Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping
by Junho Kim, Eui Hyun Suh, Kyumin Lee, Gyuri Kim, Hansu Kim, Jaeyoung Jang and In Hwan Jung
Nanomaterials 2023, 13(7), 1286; https://doi.org/10.3390/nano13071286 - 6 Apr 2023
Cited by 2 | Viewed by 2748
Abstract
In this study, we developed two novel conjugated polymers that can easily be doped with F4TCNQ organic dopants using a sequential doping method and then studied their organic thermoelectric (OTE) properties. In particular, to promote the intermolecular ordering of OTE polymers in the [...] Read more.
In this study, we developed two novel conjugated polymers that can easily be doped with F4TCNQ organic dopants using a sequential doping method and then studied their organic thermoelectric (OTE) properties. In particular, to promote the intermolecular ordering of OTE polymers in the presence of the F4TCNQ dopant, alkylthiazole-based conjugated building blocks with highly planar backbone structures were synthesized and copolymerized. All polymers showed strong molecular ordering and edge-on orientation in the film state, even in the presence of the F4TCNQ organic dopant. Thus, the sequential doping process barely changed the molecular ordering of the polymer films while making efficient molecular doping. In addition, the doping efficiency was improved in the more π-extended polymer backbones with thienothiophene units due to the emptier space in the polymer lamellar structure to locate ionized F4TCNQ. Moreover, the study of organic thin-film transistors (OTFTs) revealed that higher hole mobility in OTFTs was the key to increasing the electrical conductivity of OTE devices fabricated using the sequential doping method. Full article
(This article belongs to the Special Issue Nanocomposites for Energy Harvesting)
Show Figures

Figure 1

14 pages, 6157 KiB  
Article
Understanding the Intrinsic Carrier Transport in Highly Oriented Poly(3-hexylthiophene): Effect of Side Chain Regioregularity
by Sanyin Qu, Chen Ming, Qin Yao, Wanheng Lu, Kaiyang Zeng, Wei Shi, Xun Shi, Ctirad Uher and Lidong Chen
Polymers 2018, 10(8), 815; https://doi.org/10.3390/polym10080815 - 25 Jul 2018
Cited by 20 | Viewed by 4928
Abstract
The fundamental understanding of the influence of molecular structure on the carrier transport properties in the field of organic thermoelectrics (OTEs) is a big challenge since the carrier transport behavior in conducting polymers reveals average properties contributed from all carrier transport channels, including [...] Read more.
The fundamental understanding of the influence of molecular structure on the carrier transport properties in the field of organic thermoelectrics (OTEs) is a big challenge since the carrier transport behavior in conducting polymers reveals average properties contributed from all carrier transport channels, including those through intra-chain, inter-chain, inter-grain, and hopping between disordered localized sites. Here, combining molecular dynamics simulations and experiments, we investigated the carrier transport properties of doped highly oriented poly(3-hexylthiophene) (P3HT) films with different side-chain regioregularity. It is demonstrated that the substitution of side chains can not only take effect on the carrier transport edge, but also on the dimensionality of the transport paths and as a result, on the carrier mobility. Conductive atomic force microscopy (C-AFM) study as well as temperature-dependent measurements of the electrical conductivity clearly showed ordered local current paths in the regular side chain P3HT films, while random paths prevailed in the irregular sample. Regular side chain substitution can be activated more easily and favors one-dimensional transport along the backbone chain direction, while the irregular sample presents the three-dimensional electron hopping behavior. As a consequence, the regular side chain P3HT samples demonstrated high carrier mobility of 2.9 ± 0.3 cm2/V·s, which is more than one order of magnitude higher than that in irregular side chain P3HT films, resulting in a maximum thermoelectric (TE) power factor of 39.1 ± 2.5 μW/mK2 at room temperature. These findings would formulate design rules for organic semiconductors based on these complex systems, and especially assist in the design of high performance OTE polymers. Full article
(This article belongs to the Special Issue Polymers for Thermoelectric Application)
Show Figures

Graphical abstract

10 pages, 37663 KiB  
Article
Printing and Folding: A Solution for High-Throughput Processing of Organic Thin-Film Thermoelectric Devices
by Seyedmohammad Mortazavinatanzi, Alireza Rezaniakolaei and Lasse Rosendahl
Sensors 2018, 18(4), 989; https://doi.org/10.3390/s18040989 - 27 Mar 2018
Cited by 19 | Viewed by 6363
Abstract
Wearable electronics are rapidly expanding, especially in applications like health monitoring through medical sensors and body area networks (BANs). Thermoelectric generators (TEGs) have been the main candidate among the different types of energy harvesting methods for body-mounted or even implantable sensors. Introducing new [...] Read more.
Wearable electronics are rapidly expanding, especially in applications like health monitoring through medical sensors and body area networks (BANs). Thermoelectric generators (TEGs) have been the main candidate among the different types of energy harvesting methods for body-mounted or even implantable sensors. Introducing new semiconductor materials like organic thermoelectric materials and advancing manufacturing techniques are paving the way to overcome the barriers associated with the bulky and inflexible nature of the common TEGs and are making it possible to fabricate flexible and biocompatible modules. Yet, the lower efficiency of these materials in comparison with bulk-inorganic counterparts as well as applying them mostly in the form of thin layers on flexible substrates limits their applications. This research aims to improve the functionality of thin and flexible organic thermoelectric generators (OTEs) by utilizing a novel design concept inspired by origami. The effects of critical geometric parameters are investigated using COMSOL Multiphysics to further prove the concept of printing and folding as an approach for the system level optimization of printed thin film TEGs. Full article
(This article belongs to the Special Issue I3S 2017 Selected Papers)
Show Figures

Figure 1

Back to TopTop