Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = optimum subaperture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 20567 KiB  
Article
Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR
by Xiao Hu, Hongtu Xie, Lin Zhang, Jun Hu, Jinfeng He, Shiliang Yi, Hejun Jiang and Kai Xie
Remote Sens. 2023, 15(8), 2215; https://doi.org/10.3390/rs15082215 - 21 Apr 2023
Cited by 14 | Viewed by 2622
Abstract
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious [...] Read more.
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious range–azimuth coupling, large spatial variance, and complex motion error, which increases the difficulty of the high-efficiency and high-precision imaging. In this paper, we present an improved bistatic fast factorization backprojection (FFBP) algorithm for ocean scene imaging using the GEO satellite-unmanned aerial vehicle (GEO-UAV) VHF UWB BiSAR, which can solve the above issues with high efficiency and high precision. This method reconstructs the subimages in the orthogonal elliptical polar (OEP) coordinate system based on the GEO satellite and UAV trajectories as well as the location of the imaged scene, which can further reduce the computational burden. First, the imaging geometry and signal model of the GEO-UAV VHF UWB BiSAR are established, and the construction of the OEP coordinate system and the subaperture imaging method are proposed. Moreover, the Nyquist sampling requirements for the subimages in the OEP coordinate system are derived from the range error perspective, which can offer a near-optimum tradeoff between precision and efficiency. In addition, the superiority of the OEP coordinate system is analyzed, which demonstrates that the angular dimensional sampling rate of the subimages is significantly reduced. Finally, the implementation processes and computational burden of the proposed algorithm are provided, and the speed-up factor of the proposed FFBP algorithm compared with the BP algorithm is derived and discussed. Experimental results of ideal point targets and natural ocean scenes demonstrate the correctness and effectiveness of the proposed algorithm, which can achieve near-optimal imaging performance with a low computational burden. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

18 pages, 12570 KiB  
Article
SAR Imaging Algorithm of Ocean Waves Based on Optimum Subaperture
by Yawei Zhao, Xianen Wei, Jinsong Chong and Lijie Diao
Sensors 2022, 22(3), 1299; https://doi.org/10.3390/s22031299 - 8 Feb 2022
Cited by 3 | Viewed by 3421
Abstract
Synthetic Aperture Radar (SAR) is widely applied to the field of ocean remote sensing. Clear SAR images are the basis for ocean information acquisitions, such as parameter retrieval of ocean waves and wind field inversion of the ocean surface. However, the SAR ocean [...] Read more.
Synthetic Aperture Radar (SAR) is widely applied to the field of ocean remote sensing. Clear SAR images are the basis for ocean information acquisitions, such as parameter retrieval of ocean waves and wind field inversion of the ocean surface. However, the SAR ocean images are usually blurred, which seriously affects the acquisition of ocean information. The reasons for the wave blurring in SAR images mainly include the following two aspects. One is that when SAR observes the ocean, the motion of ocean waves will have a greater impact on imaging quality. The other is that the ocean’s surface is seriously decorrelated within the integration time. In order to obtain clear SAR images of ocean waves, a SAR imaging algorithm of ocean waves based on the optimum subaperture is proposed, aiming at the above two aspects. The optimum focus setting of the ocean waves is calculated, drawing support from the azimuth phase velocity of the dominant wave. The optimum subaperture is further calculated according to the proposed new evaluation, namely, F. Finally, according to the optimum focus setting and the optimum subaperture, the dominant wave is refocused, and a clear SAR image of the dominant wave can be obtained. The proposed algorithm was applied to airborne L-band and P-band SAR data. Furthermore, the proposed algorithm was compared with present methods, and the results sufficiently demonstrated the effectiveness and superiority of the proposed algorithm. Full article
(This article belongs to the Special Issue Radar Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 4874 KiB  
Article
Efficient SAR Azimuth Ambiguity Reduction in Coastal Waters Using a Simple Rotation Matrix: The Case Study of the Northern Coast of Jeju Island
by Joon Hyuk Choi and Joong-Sun Won
Remote Sens. 2021, 13(23), 4865; https://doi.org/10.3390/rs13234865 - 30 Nov 2021
Cited by 3 | Viewed by 3037
Abstract
Azimuth ambiguities, or ghosts on SAR images, represent one of the main obstacles for SAR applications involving coastal monitoring activities such as ship detection. While most previous methods based on azimuth antenna pattern and direct filtering are effective for azimuth ambiguity suppression, they [...] Read more.
Azimuth ambiguities, or ghosts on SAR images, represent one of the main obstacles for SAR applications involving coastal monitoring activities such as ship detection. While most previous methods based on azimuth antenna pattern and direct filtering are effective for azimuth ambiguity suppression, they may not be effective for fast cruising small ships. This paper proposes a unique approach for the reduction of azimuth ambiguities or ghosts in SAR single-look complex (SLC) images using a simple rotation matrix. It exploits the fact that the signal powers of azimuth ambiguities are concentrated on narrow bands, while those of vessels or other true ground targets are dispersed over broad bands. Through sub-aperture processing and simple axis rotation, it is possible to concentrate the dispersed energy of vessels onto a single axis while the ghost signal powers are dispersed onto three different axes. Then, the azimuth ambiguities can be easily suppressed by a simple calculation of weighted sum and difference, while preserving vessels. Applied results achieved by processing TerrSAR-X SLC images are provided and discussed. An optimum weight of 0.5 was determined by Receiver Operating Characteristic (ROC) analysis. Capabilities of ship detection from the test image were significantly improved by removing 93% of false alarms. Application results demonstrate its high performance of ghost suppression. This method can be employed as a pre-processing tool of SAR images for ship detection in coastal waters. Full article
(This article belongs to the Special Issue Advances in Spaceborne SAR – Technology and Applications)
Show Figures

Figure 1

15 pages, 3364 KiB  
Article
Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging
by Wei Xu, Jialuo Hu, Pingping Huang, Weixian Tan and Yifan Dong
Sensors 2019, 19(19), 4277; https://doi.org/10.3390/s19194277 - 2 Oct 2019
Cited by 6 | Viewed by 2699
Abstract
A spaceborne azimuth multichannel synthetic aperture radar (SAR) system can effectively realize high resolution wide swath (HRWS) imaging. However, the performance of this system is restricted by its two inherent defects. Firstly, non-uniform sampling is generated if the pulse repetition frequency (PRF) deviates [...] Read more.
A spaceborne azimuth multichannel synthetic aperture radar (SAR) system can effectively realize high resolution wide swath (HRWS) imaging. However, the performance of this system is restricted by its two inherent defects. Firstly, non-uniform sampling is generated if the pulse repetition frequency (PRF) deviates from the optimum value. Secondly, multichannel systems are very sensitive to channel errors, which are difficult to completely eliminate. In this paper, we propose a novel receive antenna architecture with an azimuth phase center adaptive adjustment which adjusts the phase center position of each sub-aperture to improve multichannel SAR system performance. On one hand, the optimum value of the PRF can be adaptively adjusted within a certain range by adjusting receiving phase centers to obtain uniform azimuth sampling. On the other hand, false targets introduced by residual channel errors after azimuth multichannel error compensation can be further suppressed. The effectiveness of the proposed method to compensate for non-uniform sampling and suppress false targets is verified by simulation experiments. Full article
(This article belongs to the Special Issue Recent Advancements in Radar Imaging and Sensing Technology)
Show Figures

Figure 1

15 pages, 6684 KiB  
Article
Sub-Aperture Partitioning Method for Three-Dimensional Wide-Angle Synthetic Aperture Radar Imaging with Non-Uniform Sampling
by Dou Sun, Shiqi Xing, Yongzhen Li, Bo Pang and Xuesong Wang
Electronics 2019, 8(6), 629; https://doi.org/10.3390/electronics8060629 - 3 Jun 2019
Cited by 7 | Viewed by 2955
Abstract
For a three-dimensional wide-angle synthetic aperture radar (SAR) with non-uniform sampling, it is necessary to divide its large aperture into several small sub-apertures before imaging due to the anisotropic characteristics of the target. The existing sub-aperture partitioning methods divide the aperture with equal [...] Read more.
For a three-dimensional wide-angle synthetic aperture radar (SAR) with non-uniform sampling, it is necessary to divide its large aperture into several small sub-apertures before imaging due to the anisotropic characteristics of the target. The existing sub-aperture partitioning methods divide the aperture with equal intervals. However, for the non-uniformly sampled SAR, those equal-interval partitioning methods may have a bad effect on the resolution of the SAR imaging result. In view of this, a sub-aperture partitioning method for three-dimensional wide-angle SAR imaging with non-uniform sampling was proposed in this paper. First, we analyzed the relationship between the three-dimensional resolution and the sampling distribution in K-space based on the Cramer–Rao lower bound. Subsequently, according to the distribution of K-space sampling, the optimum size of each sub-aperture was found and the aperture was divided non-uniformly. Furthermore, the proposed method was validated by electromagnetic simulation data. The proposed sub-aperture partitioning method ensured that the resolution of each sub-aperture was high and consistent. By comparing with the equal-interval partitioning method, the experimental results showed that our proposed method had a higher resolution imaging result. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

27 pages, 5619 KiB  
Article
Efficient Time-Domain Imaging Processing for One-Stationary Bistatic Forward-Looking SAR Including Motion Errors
by Hongtu Xie, Shaoying Shi, Hui Xiao, Chao Xie, Feng Wang and Qunle Fang
Sensors 2016, 16(11), 1907; https://doi.org/10.3390/s16111907 - 12 Nov 2016
Cited by 16 | Viewed by 5169
Abstract
With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR [...] Read more.
With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA). Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement. Full article
Show Figures

Figure 1

Back to TopTop