Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = on-table adaptive radiation therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3878 KiB  
Article
Evolving Trends and Patterns of Utilization of Magnetic Resonance-Guided Radiotherapy at a Single Institution, 2018–2024
by Robert A. Herrera, Eyub Y. Akdemir, Rupesh Kotecha, Kathryn E. Mittauer, Matthew D. Hall, Adeel Kaiser, Nema Bassiri-Gharb, Noah S. Kalman, Yonatan Weiss, Tino Romaguera, Diane Alvarez, Sreenija Yarlagadda, Ranjini Tolakanahalli, Alonso N. Gutierrez, Minesh P. Mehta and Michael D. Chuong
Cancers 2025, 17(2), 208; https://doi.org/10.3390/cancers17020208 - 10 Jan 2025
Cited by 2 | Viewed by 1929
Abstract
Background/Objectives: Over the past decade, significant advances have been made in image-guided radiotherapy (RT) particularly with the introduction of magnetic resonance (MR)-guided radiotherapy (MRgRT). However, the optimal clinical applications of MRgRT are still evolving. The intent of this analysis was to describe [...] Read more.
Background/Objectives: Over the past decade, significant advances have been made in image-guided radiotherapy (RT) particularly with the introduction of magnetic resonance (MR)-guided radiotherapy (MRgRT). However, the optimal clinical applications of MRgRT are still evolving. The intent of this analysis was to describe our institutional MRgRT utilization patterns and evolution therein, specifically as an early adopter within a center endowed with multiple other technology platforms. Materials/Methods: We retrospectively evaluated patterns of MRgRT utilization for patients treated with a 0.35-Tesla MR-Linac at our institution from April 2018 to April 2024. We analyzed changes in utilization across six annualized periods: Period 1 (April 2018–April 2019) through Period 6 (April 2023–April 2024). We defined ultra-hypofractionation (UHfx) as 5 or fewer fractions with a minimum fractional dose of 5 Gy. Electronic health records were reviewed, and data were extracted related to patient, tumor, and treatment characteristics. Results: A total of 823 treatment courses were delivered to 712 patients treated for 854 lesions. The most commonly treated sites were the pancreas (242 [29.4%]), thorax (172; 20.9%), abdominopelvic lymph nodes (107; 13.0%), liver (72; 8.7%), and adrenal glands (68; 8.3%). The median total prescribed dose of 50 Gy in five fractions (fxs) was typically delivered in consecutive days with automatic beam gating in inspiration breath hold. The median biologically effective dose (α/β = 10, BED10) was 94.4 Gy with nearly half (404, 49.1%) of all courses at a prescribed BED10 ≥ 100 Gy, which is widely regarded as a highly effective ablative dose. Courses in Period 6 vs. Period 1 more often had a prescribed BED10 ≥ 100 Gy (60.2% vs. 41.6%; p = 0.004). Of the 6036 total delivered fxs, nearly half (2643, 43.8%) required at least one fx of on-table adaptive radiotherapy (oART), most commonly for pancreatic tumors (1081, 17.9%). UHfx was used in over three quarters of all courses (630, 76.5%) with 472 (57.4%) of these requiring oART for at least one fraction. The relative utilization of oART increased significantly from Period 1 to Period 6 (37.6% to 85.0%; p < 0.001); a similar increase in the use of UHfx (66.3% to 89.5%; p < 0.001) was also observed. The median total in-room time for oART decreased from 81 min in Period 1 to 45 min in Period 6, while for non-oART, it remained stable around 40 min across all periods. Conclusions: Our institution implemented MRgRT with a priority for targeting mobile extracranial tumors in challenging anatomic locations that are frequently treated with dose escalation, require enhanced soft-tissue visualization, and could benefit from an ablative radiotherapy approach. Over the period under evaluation, the use of high-dose ablative doses (BED10 ≥ 100 Gy), oART and UHfx (including single-fraction ablation) increased significantly, underscoring both a swift learning curve and ability to optimize processes to maximize throughput and efficiency. Full article
Show Figures

Figure 1

14 pages, 1148 KiB  
Review
MRI-Guided Radiation Therapy for Prostate Cancer: The Next Frontier in Ultrahypofractionation
by Cecil M. Benitez, Michael L. Steinberg, Minsong Cao, X. Sharon Qi, James M. Lamb, Amar U. Kishan and Luca F. Valle
Cancers 2023, 15(18), 4657; https://doi.org/10.3390/cancers15184657 - 21 Sep 2023
Cited by 9 | Viewed by 3275
Abstract
Technological advances in MRI-guided radiation therapy (MRIgRT) have improved real-time visualization of the prostate and its surrounding structures over CT-guided radiation therapy. Seminal studies have demonstrated safe dose escalation achieved through ultrahypofractionation with MRIgRT due to planning target volume (PTV) margin reduction and [...] Read more.
Technological advances in MRI-guided radiation therapy (MRIgRT) have improved real-time visualization of the prostate and its surrounding structures over CT-guided radiation therapy. Seminal studies have demonstrated safe dose escalation achieved through ultrahypofractionation with MRIgRT due to planning target volume (PTV) margin reduction and treatment gating. On-table adaptation with MRI-based technologies can also incorporate real-time changes in target shape and volume and can reduce high doses of radiation to sensitive surrounding structures that may move into the treatment field. Ongoing clinical trials seek to refine ultrahypofractionated radiotherapy treatments for prostate cancer using MRIgRT. Though these studies have the potential to demonstrate improved biochemical control and reduced side effects, limitations concerning patient treatment times and operational workflows may preclude wide adoption of this technology outside of centers of excellence. In this review, we discuss the advantages and limitations of MRIgRT for prostate cancer, as well as clinical trials testing the efficacy and toxicity of ultrafractionation in patients with localized or post-prostatectomy recurrent prostate cancer. Full article
(This article belongs to the Special Issue Advances in Prostate Cancer Radiotherapy)
Show Figures

Figure 1

24 pages, 2334 KiB  
Review
Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy
by Yirong Liu, Brian Chou, Amulya Yalamanchili, Sara N. Lim, Laura A. Dawson and Tarita O. Thomas
J. Clin. Med. 2023, 12(10), 3517; https://doi.org/10.3390/jcm12103517 - 17 May 2023
Cited by 6 | Viewed by 2863
Abstract
Hepatocellular carcinoma (HCC) is the most common liver tumor, with a continually rising incidence. The curative treatment for HCC is surgical resection or liver transplantation; however, only a small portion of patients are eligible due to local tumor burden or underlying liver dysfunction. [...] Read more.
Hepatocellular carcinoma (HCC) is the most common liver tumor, with a continually rising incidence. The curative treatment for HCC is surgical resection or liver transplantation; however, only a small portion of patients are eligible due to local tumor burden or underlying liver dysfunction. Most HCC patients receive nonsurgical liver-directed therapies (LDTs), including thermal ablation, transarterial chemoembolization (TACE), transarterial radioembolization (TARE), and external beam radiation therapy (EBRT). Stereotactic ablative body radiation (SABR) is a specific type of EBRT that can precisely deliver a high dose of radiation to ablate tumor cells using a small number of treatments (or fractions, typically 5 or less). With onboard MRI imaging, MRI-guided SABR can improve therapeutic dose while minimizing normal tissue exposure. In the current review, we discuss different LDTs and compare them with EBRT, specifically SABR. The emerging MRI-guided adaptive radiation therapy has been reviewed, highlighting its advantages and potential role in HCC management. Full article
(This article belongs to the Collection Advances of MRI in Radiation Oncology)
Show Figures

Figure 1

Back to TopTop