Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = oligo-ricinoleic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4975 KiB  
Article
Novel Aromatic Estolide Esters from Biobased Resources by a Green Synthetic Approach
by Andra Tămaș, Ioan Bîtcan, Sabina Nițu, Cristina Paul, Ioana Cristina Benea, Gerlinde Iuliana Rusu, Elline Perot, Francisc Peter and Anamaria Todea
Appl. Sci. 2024, 14(17), 7832; https://doi.org/10.3390/app14177832 - 4 Sep 2024
Cited by 1 | Viewed by 1461
Abstract
The use of vegetable oils and their derivatives for polymer synthesis has been a major focus in recent years due to their universal availability, low production costs and biodegradability. In this study, the enzymatic synthesis of oligoesters of ricinoleic acid obtained from castor [...] Read more.
The use of vegetable oils and their derivatives for polymer synthesis has been a major focus in recent years due to their universal availability, low production costs and biodegradability. In this study, the enzymatic synthesis of oligoesters of ricinoleic acid obtained from castor oil combined with three aromatic natural derivatives (cinnamyl alcohol, sinapic acid, and caffeic acid) was investigated. The formation of the reaction products was demonstrated by FT-IR, MALDI-TOF MS and NMR spectroscopy and for the oligo (ricinoleyl)-caffeate the thermal properties and biodegradability in sweet water were analyzed and a rheological characterization was performed. The successful enzymatic synthesis of oligoesters from ricinoleic acid and aromatic monomers using lipases not only highlights the potential of biocatalysis in green chemistry but also contributes to the development of sustainable and biodegradable methods for synthesizing products with potential applications as cosmetic ingredients. Full article
(This article belongs to the Special Issue Bioenergy and Bioproducts from Biomass and Waste)
Show Figures

Figure 1

19 pages, 1263 KiB  
Article
Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification
by Douglas G. Hayes, Vinay K. Mannam, Ran Ye, Haizhen Zhao, Salvadora Ortega and M. Claudia Montiel
Polymers 2012, 4(2), 1037-1055; https://doi.org/10.3390/polym4021037 - 17 Apr 2012
Cited by 21 | Viewed by 11687
Abstract
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at [...] Read more.
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR), with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG); however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Graphical abstract

Back to TopTop