Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = oilfield calcite scale control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13288 KiB  
Article
Multi-Scale Visualization Study of Water and Polymer Microsphere Flooding through Horizontal Wells in Low-Permeability Oil Reservoir
by Liang Cheng, Yang Xie, Jie Chen, Xiao Wang, Zhongming Luo and Guo Chen
Energies 2024, 17(18), 4597; https://doi.org/10.3390/en17184597 - 13 Sep 2024
Cited by 2 | Viewed by 1316
Abstract
Our target USH reservoir in the D oilfield is characterized by “inverse rhythm” deposition with the noticeable features of “high porosity and low permeability”. The reservoir has been developed with waterflooding using horizontal wells. Due to the strong heterogeneity of the reservoir, water [...] Read more.
Our target USH reservoir in the D oilfield is characterized by “inverse rhythm” deposition with the noticeable features of “high porosity and low permeability”. The reservoir has been developed with waterflooding using horizontal wells. Due to the strong heterogeneity of the reservoir, water channeling is severe, and the water cut has reached 79%. Considering the high temperature and high salinity reservoir conditions, polymer microspheres (PMs) were selected to realize conformance control. In this study, characterization of the polymer microsphere suspension was achieved via morphology, size distribution, and viscosity measurement. Furthermore, a multi-scale visualization study of the reservoir development process, including waterflooding, polymer microsphere flooding, and subsequent waterflooding, was conducted using macro-scale coreflooding and calcite-etched micromodels. It was revealed that the polymer microspheres could swell in the high salinity brine (170,000 ppm) by 2.7 times if aged for 7 days, accompanied by a viscosity increase. This feature is beneficial for the injection at the wellbore while swelled to work as a profile control agent in the deep formation. The macro-scale coreflood with a 30 cm × 30 cm × 4.5 cm layer model with 108 electrodes installed enabled the oil distribution visualization from different perpendicular cross sections. In this way, the in situ conformance control ability of the polymer microsphere was revealed both qualitatively and quantitatively. Furthermore, building on the calcite-etched visible micro-model, the pore-scale variation of the residual oil when subjected to waterflooding, polymer microsphere waterflooding, and subsequent waterflooding was collected, which revealed the oil displacement efficiency increase by polymer microspheres directly. The pilot test in the field also proves the feasibility of conformance control by the polymer microspheres, i.e., more than 40,000 bbls of oil increase was observed in the produces, accompanied by an obvious water reduction. Full article
Show Figures

Figure 1

17 pages, 4628 KiB  
Article
Enhanced Nanofiltration Process of Thin Film Composite Membrane Using Dodecyl Phenol Ethoxylate and Oleic Acid Ethoxylate for Oilfield Calcite Scale Control
by Saedah R. Al-Mhyawi, Mahmoud F. Mubarak, Rasha Hosny, Manal Amine, Omnia H. Abdelraheem, M. A. Zayed, Ahmed H. Ragab and Abeer El Shahawy
Membranes 2021, 11(11), 855; https://doi.org/10.3390/membranes11110855 - 4 Nov 2021
Cited by 9 | Viewed by 2737
Abstract
This research studied the enhancing effect on the nanofiltration composite (TFCNF) membrane of two non-ionic surfactants on a thin-film composite nanofiltration membrane (TFCNF) for calcite scale (CaCO3) inhibition in oilfield application to develop a multifunctional filtration system: nanofiltration, antiscalant, and scale [...] Read more.
This research studied the enhancing effect on the nanofiltration composite (TFCNF) membrane of two non-ionic surfactants on a thin-film composite nanofiltration membrane (TFCNF) for calcite scale (CaCO3) inhibition in oilfield application to develop a multifunctional filtration system: nanofiltration, antiscalant, and scale inhibitors. The effectiveness of dodecyl phenol ethoxylate (DPE) and oleic acid ethoxylate (OAE) as novel scale inhibitors were studied using the dynamic method. Scaling tests on the membrane were performed to measure the scaling of the inhibited membrane with and without scale inhibitors for salt rejection, permeability, and flux decline. The results revealed that the TFCNF membrane flux decline was improved in the presence of scale inhibitors from 22% to about 15%. The rejection of the membrane scales increases from 72% for blank membranes, reaching 97.2% and 88% for both DPE and OAE, respectively. These confirmed that scale inhibitor DPE had superior anti-scaling properties against calcite deposits on TFCNF membranes. Inhibited scaled TFCNF membrane was characterized using environmental scanning electron (ESEM), FTIR, and XRD techniques. The results of the prepared TFCNF membrane extensively scaled by the calcite deposits were correlated to its morphology. Full article
(This article belongs to the Special Issue Thin Film Composite Membranes)
Show Figures

Figure 1

Back to TopTop