Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = nucleosynthesis in the interiors of AGB stars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 593 KB  
Article
Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources
by Silvia Tosi and Ester Marini
Astronomy 2025, 4(1), 2; https://doi.org/10.3390/astronomy4010002 - 20 Jan 2025
Cited by 1 | Viewed by 2451
Abstract
Understanding the transition from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase is crucial for advancing our knowledge of galaxy evolution and the chemical enrichment of the universe. In this manuscript, we analyze 137 carbon-rich, evolved low- and intermediate-mass stars [...] Read more.
Understanding the transition from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase is crucial for advancing our knowledge of galaxy evolution and the chemical enrichment of the universe. In this manuscript, we analyze 137 carbon-rich, evolved low- and intermediate-mass stars (LIMSs) from both the Magellanic Clouds (MCs) and the Milky Way (MW). We focus on AGB, post-AGB, and PN sources, tracing the evolution of their emission through spectral energy distribution (SED) modeling. Consistent with previous studies, we observe that more evolved LIMSs exhibit cooler dust temperatures and lower optical depths. Amorphous carbon (amC) is the dominant dust species in all the evolutionary stages examined in this work, while silicon carbide (SiC) accounts for 5–30% of the total dust content. Additionally, we analyze color–color diagrams (CCDs) in the infrared using data from IRAC, WISE, and 2MASS, uncovering significant evolutionary trends in LIMS emission. AGB stars evolve from bluer to redder colors as they produce increasing amounts of dust. Post-AGB and PN sources are clearly differentiated from AGB stars, reflecting shifts in both effective stellar and dust temperatures as the stars transition through these evolutionary phases. Full article
Show Figures

Figure 1

6 pages, 256 KB  
Communication
Insight on AGB Mass-Loss and Dust Production from PNe
by Silvia Tosi
Galaxies 2024, 12(6), 85; https://doi.org/10.3390/galaxies12060085 - 2 Dec 2024
Viewed by 1338
Abstract
The asymptotic giant branch (AGB) phase, experienced by low- and intermediate-mass stars (LIMSs), plays a crucial role in galaxies due to its significant dust production. Planetary nebulae (PNe) offer a novel perspective, providing valuable insights into the dust production mechanisms and the evolutionary [...] Read more.
The asymptotic giant branch (AGB) phase, experienced by low- and intermediate-mass stars (LIMSs), plays a crucial role in galaxies due to its significant dust production. Planetary nebulae (PNe) offer a novel perspective, providing valuable insights into the dust production mechanisms and the evolutionary history of LIMSs. We selected a sample of nine PNe from the Large Magellanic Cloud (LMC), likely originating from single stars. By modeling their spectral energy distributions (SEDs) with photoionization techniques, we successfully reproduced the observed photometric data, spectra, and chemical abundances. This approach enabled us to constrain key characteristics of the central stars (CSs), dust, and gaseous nebulae, which were then compared with predictions from stellar evolution models. By integrating observational data across ultraviolet (UV) to infrared (IR) wavelengths, we achieved a comprehensive understanding of the structure of the PNe in our sample. The results of the SED analysis are consistent with evolutionary models and previous studies that focus on individual components of the PN, such as dust or the gaseous nebula. Our analysis enabled us to determine the metallicity, the progenitor mass of the CSs, and the amount of dust and gas surrounding the CSs, linking these properties to the previous AGB phase. The PN phase provides critical insights into the physical processes active during earlier evolutionary stages. Additionally, we found that higher progenitor masses are associated with greater amounts of dust in the surrounding nebulae but lower amounts of gaseous material compared to sources with lower progenitor masses. Full article
Show Figures

Figure 1

10 pages, 3558 KB  
Article
The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study
by Daniela Mercogliano, Andreas Best and David Rapagnani
Galaxies 2024, 12(6), 79; https://doi.org/10.3390/galaxies12060079 - 20 Nov 2024
Cited by 1 | Viewed by 1184
Abstract
22Ne(α, γ)26Mg is pivotal in the understanding of several open astrophysical questions, as the nucleosynthesis beyond Fe through the s-process, but its stellar reaction rate is still subject to large uncertainties. These mainly arise from its extremely low rate in [...] Read more.
22Ne(α, γ)26Mg is pivotal in the understanding of several open astrophysical questions, as the nucleosynthesis beyond Fe through the s-process, but its stellar reaction rate is still subject to large uncertainties. These mainly arise from its extremely low rate in the Gamow energy region, whose measurement is hampered by the unavoidable presence of the cosmic ray background noise. A possibility to overcome this issue is to perform the measurement in a quasi background-free environment, such as that offered by the underground Bellotti Ion Beam Facility at LNGS. This is the key idea of EASγ experiment. In this study, the signal from the de-excitation of the compound nucleus 26Mg has been simulated and its detection has been investigated both on surface and deep-underground laboratories. The simulation results show the enhancement in sensitivity achieved by performing the measurement deep underground and with an additional shielding, yielding to unprecedented sensitivity. Full article
Show Figures

Figure 1

20 pages, 799 KB  
Review
Mixing and Magnetic Fields in Asymptotic Giant Branch Stars in the Framework of FRUITY Models
by Diego Vescovi
Universe 2022, 8(1), 16; https://doi.org/10.3390/universe8010016 - 28 Dec 2021
Cited by 6 | Viewed by 4281
Abstract
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary [...] Read more.
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary models, which are an essential tool to interpret the wealth of available observational and nucleosynthetic data. Motivated by such improvements, the FUNS stellar evolutionary code has been updated. Nonetheless, mixing processes occurring in AGB stars’ interiors are currently not well-understood. This is especially true for the physical mechanism leading to the formation of the 13C pocket, the major neutron source in low-mass AGB stars. In this regard, post-processing s-process models assuming that partial mixing of protons is induced by magneto-hydrodynamics processes were shown to reproduce many observations. Such mixing prescriptions have now been implemented in the FUNS code to compute stellar models with fully coupled nucleosynthesis. Here, we review the new generation of FRUITY models that include the effects of mixing triggered by magnetic fields by comparing theoretical findings with observational constraints available either from the isotopic analysis of trace-heavy elements in presolar grains or from carbon AGB stars and Galactic open clusters. Full article
Show Figures

Figure 1

16 pages, 1087 KB  
Article
Mixing Uncertainties in Low-Metallicity AGB Stars: The Impact on Stellar Structure and Nucleosynthesis
by Umberto Battino, Claudia Lederer-Woods, Borbála Cseh, Pavel Denissenkov and Falk Herwig
Universe 2021, 7(2), 25; https://doi.org/10.3390/universe7020025 - 26 Jan 2021
Cited by 9 | Viewed by 3984
Abstract
The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution [...] Read more.
The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 104 M, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided. Full article
(This article belongs to the Special Issue AGB Stars: Element Forges of the Universe)
Show Figures

Figure 1

Back to TopTop