Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = nucleic acid-dependent ATPase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2558 KiB  
Article
Transcriptomic Changes in Endothelial Cells Triggered by Na,K-ATPase Inhibition: A Search for Upstream Na+i/K+i Sensitive Genes
by Elizaveta A. Klimanova, Svetlana V. Sidorenko, Polina A. Abramicheva, Artem M. Tverskoi, Sergei N. Orlov and Olga D. Lopina
Int. J. Mol. Sci. 2020, 21(21), 7992; https://doi.org/10.3390/ijms21217992 - 27 Oct 2020
Cited by 7 | Viewed by 2842
Abstract
Stimulus-dependent elevation of intracellular Ca2+ affects gene expression via well-documented calmodulin-mediated signaling pathways. Recently, we found that the addition of extra- and intracellular Ca2+ chelators increased, rather than decreased, the number of genes expressed, and that this is affected by the [...] Read more.
Stimulus-dependent elevation of intracellular Ca2+ affects gene expression via well-documented calmodulin-mediated signaling pathways. Recently, we found that the addition of extra- and intracellular Ca2+ chelators increased, rather than decreased, the number of genes expressed, and that this is affected by the elevation of [Na+]i/[K+]i-ratio. This assumes the existence of a novel Na+i/K+i-mediated Ca2+i-independent mechanism of excitation-transcription coupling. To identify upstream Na+i/K+i-sensitive genes, we examined the kinetics of transcriptomic changes in human umbilical vein endothelial cells (HUVEC) subjected to Na,K-ATPase inhibition by ouabain or K+-free medium. According to our data, microRNAs, transcription factors, and proteins involved in immune response and inflammation might be considered as key components of Na+i/K+i-mediated excitation-transcription coupling. Special attention was focused on the FOS gene and the possible mechanism of transcription regulation via G-quadruplexes, non-canonical secondary structures of nucleic acids, whose stability depends on [Na+]i/[K+]i-ratio. Verification of the [Na+]i/[K+]i-sensitive transcription regulation mechanism should be continued in forthcoming studies. Full article
(This article belongs to the Special Issue Cardiotonic Steroids: From Toxins to Hormones)
Show Figures

Figure 1

13 pages, 2443 KiB  
Article
Purification and Characterization of Double-Stranded Nucleic Acid-Dependent ATPase Activities of Tagged Dicer-Related Helicase 1 and its Short Isoform in Caenorhabditis elegans
by Taishi Kobayashi, Takuro Murakami, Yuu Hirose and Toshihiko Eki
Genes 2020, 11(7), 734; https://doi.org/10.3390/genes11070734 - 1 Jul 2020
Cited by 1 | Viewed by 2550
Abstract
The Dicer-related helicases (DRHs) are members of a helicase subfamily, and mammalian DRHs such as retinoic acid-inducible gene-I (RIG-I), are involved in antiviral immunity. Caenorhabditis elegans DRH-1 and DRH-3 play crucial roles in antiviral function and chromosome segregation, respectively. Although intrinsic double-stranded RNA-dependent [...] Read more.
The Dicer-related helicases (DRHs) are members of a helicase subfamily, and mammalian DRHs such as retinoic acid-inducible gene-I (RIG-I), are involved in antiviral immunity. Caenorhabditis elegans DRH-1 and DRH-3 play crucial roles in antiviral function and chromosome segregation, respectively. Although intrinsic double-stranded RNA-dependent ATP-hydrolyzing activity has been observed in the recombinant DRH-3 protein prepared from Escherichia coli, there are no reports of biochemical studies of the nematode RIG-I homolog DRH-1. In this study, the secondary structure prediction by JPred4 revealed that DRH-1 and DRH-3 had distinct N-terminal regions and that a 200-amino acid N-terminal region of DRH-1 could form a structure very rich in α-helices. We investigated expressions and purifications of a codon-optimized DRH-1 with four different N-terminal tags, identifying poly-histidine (His)-small ubiquitin-like modifier (SUMO) as a suitable tag for DRH-1 preparation. Full-length (isoform a) and a N-terminal truncated (isoform b) of DRH-1 were purified as the His-SUMO-tagged fusion proteins. Finally, the nucleic acid-dependent ATPase activities were investigated for the two His-SUMO-tagged DRH-1 isoforms and His-tagged DRH-3. The tagged DRH-3 exhibited dsRNA-dependent ATPase activity. However, detectable dsRNA dependency of ATPase activities was not found in either isoform of tagged DRH-1 and a tag-free DRH-1 (isoform a) treated with SUMO protease. These observations suggest that DRH-1 and its short isoform have no or poor nucleic acid-dependent ATPase activity, unlike DRH-3 and mammalian DRHs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop