Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = novel hybrid resonator (NHR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 6207 KB  
Article
A Generalized Design of On-Chip LTCC Balanced Filters Using Novel Hybrid Resonators with Intrinsic Ultra-Wideband Suppression for 5G Applications
by Wei Zhao, Yongle Wu, Zuoyu Xu and Weimin Wang
Electronics 2025, 14(1), 17; https://doi.org/10.3390/electronics14010017 - 24 Dec 2024
Viewed by 1588
Abstract
In this paper, we examine an ultra-compact on-chip balanced filter based on novel hybrid resonators (NHRs) comprising short transmission line sections (STLSs) and series LC blocks using low-temperature co-fired ceramic (LTCC) technology. Based on a rigorous theoretical analysis, the proposed NHR demonstrates the [...] Read more.
In this paper, we examine an ultra-compact on-chip balanced filter based on novel hybrid resonators (NHRs) comprising short transmission line sections (STLSs) and series LC blocks using low-temperature co-fired ceramic (LTCC) technology. Based on a rigorous theoretical analysis, the proposed NHR demonstrates the potential for intrinsic ultra-wideband differential-mode (DM) and common-mode (CM) suppression without any additional suppressing structures. Furthermore, the resonance of NHRs was determined by four degrees of freedom, providing flexibility for miniaturization. Theoretical extensions of the Nth-order topology can be easily achieved by the simple coupling schemes that occur exclusively between STLSs. For verification, a balanced filter covering the 5G band n78 with an area of 0.065λg × 0.072λg was designed using the proposed optimization-based design procedure. An ultra-low insertion loss of 0.8 dB was obtained. The quasi-full CM stopband with a 20 dB rejection level ranged from 0 to 12.9 GHz. And the ultra-wide upper DM stopband with a 20 dB rejection level ranged from 4.4 to 11.5 GHz. Good agreement between the theoretical, simulated, and measured results indicate the validity of the proposed design principle. Full article
Show Figures

Figure 1

Back to TopTop