Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = northern white-cedar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7104 KB  
Article
Simulating the Long-Term Response of Forest Succession to Climate Change in the Boreal Forest of Northern Ontario, Canada
by Guy R. Larocque, F. Wayne Bell, Eric B. Searle, Stephen J. Mayor, Thomas Schiks and Parvin Kalantari
Forests 2024, 15(8), 1417; https://doi.org/10.3390/f15081417 - 13 Aug 2024
Cited by 3 | Viewed by 2352
Abstract
The effect of climate change on forest dynamics is likely to increase in importance in the forthcoming decades. For this reason, it is essential to predict the extent to which changes in temperature, precipitation, and atmospheric CO2 might affect the development of [...] Read more.
The effect of climate change on forest dynamics is likely to increase in importance in the forthcoming decades. For this reason, it is essential to predict the extent to which changes in temperature, precipitation, and atmospheric CO2 might affect the development of forest ecosystems and successional pathways. The gap model ZELIG-CFS was used to simulate the potential long-term effects of climate change on species-specific annual change in mean basal area and stand density under two scenarios of representative concentration pathways (RCP), 4.5 and 8.5, for the boreal forest region of Ontario, Canada, where mean temperature, precipitation, and atmospheric CO2 are expected to increase. Forest ecosystems in this boreal region included pure and mixed stands of black spruce (Picea mariana [Mill.] B.S.P.), paper birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea [L.] Mill.), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), northern white cedar (Thuja occidentalis L.), American larch (Larix laricina [Du Roi] K. Koch), and balsam poplar (Populus balsamifera L.). Simulation results under climate change generally predicted a decline in the basal area and stand density for black spruce, balsam fir, jack pine, and white spruce, but an increase for paper birch, trembling aspen, American larch, and balsam poplar. However, the extent of change differed regionally among species. Forest composition is expected to change over the long term. Simulation results indicated that shade-intolerant deciduous and conifer species will increase their dominance over the 100-year time horizon. This transition toward the increasing presence of deciduous forests is likely explained by more favorable temperature conditions for their growth and development. Full article
(This article belongs to the Special Issue Forest Growth Modeling in Different Ecological Conditions)
Show Figures

Figure 1

17 pages, 4461 KB  
Article
Dendroclimatic Analysis of Sierra Nevada Mixed Conifer Species between Different Diameter Size Classes
by Andrew Hirsch, Sophan Chhin and Jianwei Zhang
Forests 2023, 14(3), 489; https://doi.org/10.3390/f14030489 - 28 Feb 2023
Viewed by 3478
Abstract
Climate change is expected to lead to higher temperatures in the Mediterranean region of northern California in the Sierra Nevada. Dendroclimatic studies typically focus on large, old trees, but there relatively limited understanding on how climatic sensitivity can vary with trees of different [...] Read more.
Climate change is expected to lead to higher temperatures in the Mediterranean region of northern California in the Sierra Nevada. Dendroclimatic studies typically focus on large, old trees, but there relatively limited understanding on how climatic sensitivity can vary with trees of different size classes. We collected tree increment cores and compared radial growth responses of small (20.32 to ≤40.64 cm), medium (40.64 to ≤60.96 cm), and large (>60.96 cm) diameter mixed conifer species in the Sierra Nevada to different climate variables (temperature, precipitation, and climate moisture index (CMI)). The most common tree species encountered were white fir (Abies concolor (Gord. & Glend.) Lindl.), followed by sugar pine (Pinus lambertiana Dougl.), ponderosa pine (Pinus ponderosa Dougl. Ex P. & C. Laws), and incense cedar (Calocedrus decurrens (Torr.) Florin). One of the most coherent responses from all diameter groups and across all species was the positive response to increasing minimum winter temperatures. All diameter groups and species also responded positively to precipitation and CMI at some point in the analysis period, which is the seasonal window of April of the prior year to October of the current year of ring formation. Perhaps the most notable difference when comparing the three diameter groups to climate was the higher occurrence of negative responses to the temperature of the previous year from the largest diameter group, as well as the higher number of negative responses to temperature in general. These results suggest that larger trees may be more sensitive to future climate projections compared with smaller trees and they may carry those effects into the next year. The use of dendroclimatology to assess how mixed conifer species in the Sierra Nevada responded to past climate is a key resource that can be used to infer how trees may respond to a future changing climate. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2766 KB  
Article
Escape Game: Responses of Northern White Cedar (Thuja occidentalis L.) to an Extreme Reduction in White-Tailed Deer (Odocoileus virginianus Zimmerman) Population
by Frédéric Poirier, Jean-Pierre Tremblay, Olivier Villemaire-Côté and Jean-Claude Ruel
Forests 2023, 14(3), 455; https://doi.org/10.3390/f14030455 - 22 Feb 2023
Viewed by 2058
Abstract
Northern white cedar (Thuja occidentalis L.) is a species of high ecological and economic value whose abundance has been declining since the pre-industrial period. It is an important element of white-tailed deer (Odocoileus virginianus Zimmerman) habitat, but its regeneration can be [...] Read more.
Northern white cedar (Thuja occidentalis L.) is a species of high ecological and economic value whose abundance has been declining since the pre-industrial period. It is an important element of white-tailed deer (Odocoileus virginianus Zimmerman) habitat, but its regeneration can be compromised by excessive browsing. This situation is especially critical in deeryards, where deer concentrate during winter. In 2018 and 2019, deer culling operations were carried out by the Ministry of Forests, Wildlife and Parks of Québec over 400 km2 in response to the occurrence of chronic wasting disease cases on a red deer farm. This operation offered an opportunity to look at how variations in deer pressure influence cedar regeneration and how cedar responds to a sudden reduction in browsing. We conducted regeneration surveys within and outside mapped deeryards both in the deer reduction zone and in a control zone. We performed dendrochronological analyses of cedar seedlings and saplings to quantify radial growth response to a reduction in browsing pressure. The results show that cedar basal area influences the abundance of small seedlings but that the effect of browsing becomes dominant for seedlings taller than 50 cm. Cedar growth responds to a reduction in browsing, but a two-year period was not sufficient to translate into changes in regeneration structure. The duration of the windows of opportunity at low browsing pressure required for cedar to reach a safe height remains to be determined. However, canopy openness had a significant influence on growth, suggesting that silvicultural measures could be taken to shorten the period of vulnerability to deer browsing. Full article
(This article belongs to the Special Issue Interactions between Ungulates and Forest Ecosystems)
Show Figures

Figure 1

27 pages, 13159 KB  
Article
Evaluating the Performance of a Forest Succession Model to Predict the Long-Term Dynamics of Tree Species in Mixed Boreal Forests Using Historical Data in Northern Ontario, Canada
by Guy R. Larocque and F. Wayne Bell
Forests 2021, 12(9), 1181; https://doi.org/10.3390/f12091181 - 31 Aug 2021
Cited by 6 | Viewed by 4347
Abstract
Environmental concerns and economic pressures on forest ecosystems have led to the development of sustainable forest management practices. As a consequence, forest managers must evaluate the long-term effects of their management decisions on potential forest successional pathways. As changes in forest ecosystems occur [...] Read more.
Environmental concerns and economic pressures on forest ecosystems have led to the development of sustainable forest management practices. As a consequence, forest managers must evaluate the long-term effects of their management decisions on potential forest successional pathways. As changes in forest ecosystems occur very slowly, simulation models are logical and efficient tools to predict the patterns of forest growth and succession. However, as models are an imperfect representation of reality, it is desirable to evaluate them with historical long-term forest data. Using remeasured tree and stand data from three data sets from two ecoregions in northern Ontario, the succession gap model ZELIG-CFS was evaluated for mixed boreal forests composed of black spruce (Picea mariana [Mill.] B.S.P.), balsam fir (Abies balsamea [L.] Mill.), jack pine (Pinus banksiana L.), white spruce (Picea glauca [Moench] Voss), trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), northern white cedar (Thuja occidentalis L.), American larch (Larix laricina [Du Roi] K. Koch), and balsam poplar (Populus balsamefera L.). The comparison of observed and predicted basal areas and stand densities indicated that ZELIG-CFS predicted the dynamics of most species consistently for periods varying between 5 and 57 simulation years. The patterns of forest succession observed in this study support gap phase dynamics at the plot scale and shade-tolerance complementarity hypotheses at the regional scale. Full article
(This article belongs to the Special Issue Simulation Models of the Dynamics of Forest Ecosystems)
Show Figures

Figure 1

15 pages, 3632 KB  
Article
The Northern White-Cedar Recruitment Bottleneck: Understanding the Effects of Substrate, Competition, and Deer Browsing
by Laura F. Reuling, Christel C. Kern, Laura S. Kenefic and Dustin R. Bronson
Forests 2019, 10(6), 501; https://doi.org/10.3390/f10060501 - 12 Jun 2019
Cited by 9 | Viewed by 3911
Abstract
Research Highlights: Regenerating northern white-cedar (Thuja occidentalis L.) is challenging throughout much of its range. This study attempts to relate differences in natural regeneration to stand- and seedbed-level factors. Background and Objectives: Lack of regeneration of northern white-cedar is often attributed to [...] Read more.
Research Highlights: Regenerating northern white-cedar (Thuja occidentalis L.) is challenging throughout much of its range. This study attempts to relate differences in natural regeneration to stand- and seedbed-level factors. Background and Objectives: Lack of regeneration of northern white-cedar is often attributed to overbrowsing by white-tailed deer (Odocoileus virginianus Zimmerman) because white-cedar is a preferred winter browse species. However, there are many other factors that may contribute to regeneration failure for white-cedar including its specific seedbed requirements and competition from other, often faster-growing trees and shrubs. Materials and Methods: We surveyed five mature white-cedar stands in Wisconsin, USA that have had little to no management in the past 50+ years to find stem densities of natural white-cedar regeneration in three height classes. We also collected data at each stand on potential predictor variables including overstory attributes, competitive environment, seedbed, and browsing by deer. We used model selection to create separate models to predict stem density of each white-cedar regeneration height class. Results: None of the measures of deer browsing used in this study were found to be associated with white-cedar regeneration. Soil pH, competition from other seedlings and saplings, and stem density of white-cedar in the overstory were found to be potentially associated with white-cedar regeneration. Conclusions: While browsing by deer is likely a factor affecting white-cedar regeneration in many areas, this study highlights the challenge of quantifying deer browse effects, as well as showing that other factors likely contribute to the difficulty of regenerating white-cedar. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 1676 KB  
Article
Structural Attributes of Old-Growth and Partially Harvested Northern White-Cedar Stands in Northeastern North America
by Nathan Wesely, Shawn Fraver, Laura S. Kenefic, Aaron R. Weiskittel, Jean-Claude Ruel, Michael E. Thompson and Alan S. White
Forests 2018, 9(7), 376; https://doi.org/10.3390/f9070376 - 22 Jun 2018
Cited by 10 | Viewed by 4561
Abstract
Forestry practitioners often need to identify old-growth stands because of their high conservation value. To identify the structural and compositional characteristics potentially unique to old-growth northern white-cedar (Thuja occidentalis L.) stands, we compared 16 old-growth stands and 17 partially harvested stands in [...] Read more.
Forestry practitioners often need to identify old-growth stands because of their high conservation value. To identify the structural and compositional characteristics potentially unique to old-growth northern white-cedar (Thuja occidentalis L.) stands, we compared 16 old-growth stands and 17 partially harvested stands in Maine, USA and New Brunswick, Canada. Potential old-growth predictors included common structural metrics such as basal area (BA), quadratic mean diameter (QMD), large tree (≥40 cm diameter at breast height) density, and volumes of coarse woody debris (CWD), along with six structural indices. Using generalized linear mixed-models, we identified two significant structural predictors that differentiate old-growth from partially harvested stands when used in combination: Volume of advanced-decay CWD and live tree QMD. None of the structural indices were useful in distinguishing between old-growth and partially harvested stands, nor did the two types differ with respect to tree species composition. Our results demonstrate that two metrics easily derived from standard inventory data—decayed CWD volume and QMD—effectively characterize the old-growth white-cedar stands sampled in this study. Taken together, these results can improve management decision making for white-cedar, particularly in the context of certification, while also shedding light on the effects of past partial harvesting on current forest structure. Full article
(This article belongs to the Special Issue Forest Structural Dynamics in the 21st Century)
Show Figures

Figure 1

11 pages, 1237 KB  
Article
Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer
by Nicholas Bolton, Joseph Shannon, Joshua Davis, Matthew Van Grinsven, Nam Jin Noh, Shon Schooler, Randall Kolka, Thomas Pypker and Joseph Wagenbrenner
Forests 2018, 9(3), 146; https://doi.org/10.3390/f9030146 - 16 Mar 2018
Cited by 13 | Viewed by 5445
Abstract
Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover [...] Read more.
Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations in depressional black ash wetlands in the Ottawa National Forest in Michigan to mimic the short-term and long-term effects of EAB. These wetlands were planted with 10 alternative tree species in 2013. Based on initial results in the Michigan sites, a riparian corridor in the Superior Municipal Forest in Wisconsin was planted with three alternative tree species in 2015. Results across both locations indicate that silver maple (Acer saccharinum L.), red maple (Acer rubrum L.), American elm (Ulmus americana L.), and northern white cedar (Thuja occidentalis L.) are viable alternative species to plant in black ash-dominated wetlands. Additionally, selectively planting on natural or created hummocks resulted in two times greater survival than in adjacent lowland sites, and this suggests that planting should be implemented with microsite selection or creation as a primary control. Regional landowners and forest managers can use these results to help mitigate the canopy and structure losses from EAB and maintain forest cover and hydrologic function in black ash-dominated wetlands after infestation. Full article
(This article belongs to the Special Issue Understanding and Managing Emerald Ash Borer Impacts on Ash Forests)
Show Figures

Figure 1

22 pages, 3493 KB  
Article
Development of Northern White-Cedar (Thuja occidentalis L.) Plantations within and outside Deer Yards
by Olivier Villemaire-Côté, Jean-Claude Ruel and Luc Sirois
Forests 2017, 8(9), 326; https://doi.org/10.3390/f8090326 - 1 Sep 2017
Cited by 9 | Viewed by 6028
Abstract
Regional surveys done over the last decades show a clear decline in abundance of Northern white-cedar (Thuja occidentalis L.) throughout its range. A lack of seed trees, difficulties in the establishment of natural regeneration and high browsing pressure caused by increasing deer [...] Read more.
Regional surveys done over the last decades show a clear decline in abundance of Northern white-cedar (Thuja occidentalis L.) throughout its range. A lack of seed trees, difficulties in the establishment of natural regeneration and high browsing pressure caused by increasing deer populations have been identified as plausible causes. Current silvicultural strategies for cedar restoration recommend partial cutting to promote and release natural regeneration, but there is also a need to restore the species in areas where it became absent. Yet, little attention has been given to cedar plantations. This study provides a first characterisation of the effects of competition, silvicultural treatments and deer, moose and hare browsing on planted cedar growth, survival, and stem form. Pure and mixed cedar plantations aged 5–27 years located in Eastern Québec were sampled. Both inside and outside deer yards, planted cedars showed high survival rates and were generally subject to low browsing pressure, but 45% were forked. Cedars showed high growth rates and strong reaction to stand opening. Results suggest that at reduced competition levels, a 9-year browser exclusion could be sufficient to establish safe-from-browsing cedar stands of >3 m in height. Full article
Show Figures

Figure 1

16 pages, 1074 KB  
Article
Development of Northern White-Cedar Regeneration Following Partial Cutting, with and without Deer Browsing
by Catherine Larouche and Jean-Claude Ruel
Forests 2015, 6(2), 344-359; https://doi.org/10.3390/f6020344 - 2 Feb 2015
Cited by 11 | Viewed by 6928
Abstract
Northern white-cedar (Thuja occidentalis L.) is an important commercial species with a high wildlife value, both as a food source and habitat for many bird and mammal species. Concerns have been expressed about its decreasing abundance across its range, and especially in [...] Read more.
Northern white-cedar (Thuja occidentalis L.) is an important commercial species with a high wildlife value, both as a food source and habitat for many bird and mammal species. Concerns have been expressed about its decreasing abundance across its range, and especially in mixedwood stands, where it has to compete with several other species and can suffer from heavy browsing. In this study, we quantified the development of natural northern white-cedar seedlings and saplings under various partial cutting regimes, with and without white-tailed deer (Odocoileus virgianus Zimmerman) browsing, in three selected sites in Quebec (Canada) and in Maine (USA). Our data show that northern white-cedar regeneration was present in all studied stands, but that only a few stems were taller than 30 cm on the two sites with high densities of deer. In the absence of heavy browsing, stems reached a height of 30 cm in 11 years, and 130 cm in 28 years. Height growth of northern white-cedar regeneration increased with canopy light transmittance, while ground-level diameter increment increased after partial cutting. This suggests that partial cutting can be used in mixedwood stands to release natural northern white-cedar regeneration, but also that the recruitment of northern white-cedar seedlings to larger size classes constitutes a major challenge in stands subject to heavy deer browsing. Full article
Show Figures

Figure 1

18 pages, 1439 KB  
Article
Growth Response of Northern White-Cedar (Thuja occidentalis) to Natural Disturbances and Partial Cuts in Mixedwood Stands of Quebec, Canada
by Jean-Claude Ruel, Jean-Martin Lussier, Sabrina Morissette and Nicolas Ricodeau
Forests 2014, 5(6), 1194-1211; https://doi.org/10.3390/f5061194 - 28 May 2014
Cited by 17 | Viewed by 7959
Abstract
Northern white-cedar (Thuja occidentalis) is a species of high commercial and ecological value, the abundance of which has been declining since the middle of the 19th century. Very little information regarding its silviculture in mixedwood stands is currently available, even though [...] Read more.
Northern white-cedar (Thuja occidentalis) is a species of high commercial and ecological value, the abundance of which has been declining since the middle of the 19th century. Very little information regarding its silviculture in mixedwood stands is currently available, even though a significant portion of wood resources comes from these stands. The present study is a retrospective analysis of white-cedar growth in partially harvested mixedwood stands of western Quebec, Canada. Eight stands distributed across two regions were analyzed. Dendrochronological approaches examined long-term diameter growth for sample white-cedar trees and stems of associated species. These approaches were used to reconstruct stand characteristics at the time of harvesting, together with local harvesting intensity. The study demonstrated white-cedar’s capacity to maintain good growth for long periods of time and at large tree sizes. Accession to the upper canopy positions occurs through repeated episodes of suppression/release, most of which seem to be associated with spruce budworm (Choristoneura fumiferana) outbreaks. White-cedar response to partial harvesting varies with tree size, residual basal area and species composition. Growth response was generally stronger for small trees, even though large trees still maintained the best diameter growth. Growth of white-cedar was negatively affected by an increase in softwood proportion in basal area. Growth responses to harvesting could be sustained for a period of 20 years. Full article
Show Figures

Figure 1

Back to TopTop