Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = northern Oman Mountains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2272 KB  
Article
Detrital Zircon U–Pb Geochronology of the Muti Formation: Implications for Provenance and Evolution of the Oman Foreland Basin
by Iftikhar Ahmed Abbasi, Muhammad Qasim, Jenan Ahmed Attar, Mohamed A. K. El-Ghali, Mohamed S. H. Moustafa and Lin Ding
Geosciences 2026, 16(1), 15; https://doi.org/10.3390/geosciences16010015 - 24 Dec 2025
Abstract
Detrital zircon U–Pb dating from the Muti Formation sheds light on sediment sources and foreland basin development along the northeastern Arabian margin during the Late Cretaceous. The siliciclastic-rich Muti Formation was deposited in a syn-obduction foreland basin that formed as the Semail Ophiolite [...] Read more.
Detrital zircon U–Pb dating from the Muti Formation sheds light on sediment sources and foreland basin development along the northeastern Arabian margin during the Late Cretaceous. The siliciclastic-rich Muti Formation was deposited in a syn-obduction foreland basin that formed as the Semail Ophiolite advanced. Zircon age spectra from eastern (Nakhal and Sayga) and western (Murri) sections are dominated by Neoproterozoic–Cambrian ages (450–900 Ma), linked to the Pan-African orogeny and the Arabian–Nubian Shield, indicating these as the main sediment sources. The Murri section also contains older Mesoproterozoic to Archean zircons, likely recycled from the Nafun Group (part of the Huqf Supergroup), suggesting reworking of ancient Gondwanan cover sequences rather than direct input from the Indian craton. Additional Permian zircons reflect input from Arabian Plate magmatic rocks, while Jurassic–Cretaceous grains indicate material derived from the Semail Ophiolite and related arc terranes. Overall, the Muti Formation records a mixed sediment supply from the Arabian Shield, reworked Gondwanan sandstones, and ophiolitic detritus, marking the transition from a passive margin to a flexural foreland basin. The dominance of Pan-African zircon ages highlights continued recycling of Gondwanan sequences and refines models of Late Cretaceous basin evolution in northern Oman, underscoring the complex, multi-cycle nature of sedimentation in this tectonically active setting. Full article
Show Figures

Figure 1

13 pages, 4400 KB  
Article
Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management
by Abdullah Abdullah, Shujaul Mulk Khan, Rabia Afza, Amos Kipkoech, Shakil Ahmad Zeb, Zahoorul Haq, Fazal Manan, Zeeshan Ahmad, Muhammad Shakeel Khan, Jawad Hussain and Henrik Balslev
Wild 2025, 2(4), 41; https://doi.org/10.3390/wild2040041 - 10 Oct 2025
Viewed by 491
Abstract
Nannorrhops ritchieana (Mazri) forests are found in Pakistan, Afghanistan, Iran, and Oman. These forests are ecologically and economically important to local communities and exhibit complex spatial distributions. This research examines the distribution of Mazri forests and their responses to varying phosphorus levels across [...] Read more.
Nannorrhops ritchieana (Mazri) forests are found in Pakistan, Afghanistan, Iran, and Oman. These forests are ecologically and economically important to local communities and exhibit complex spatial distributions. This research examines the distribution of Mazri forests and their responses to varying phosphorus levels across different climatic zones. We collected data from 508 plots in the Khyber Pakhtunkhwa region of Pakistan, gathering 500 g of soil from each plot for phosphorus analysis, along with measurements of abundance and various traits. A distribution map was constructed to assess the impact of phosphorus levels on Mazri forest distribution and traits across climatic zones. Using a PCA biplot, we visualized the abundance and density and studied the effects of different climatic and environmental factors. Our findings suggest that phosphorus levels do not significantly influence the distribution of Mazri forests, which vary across different climatic regions. Forests are stable in the eastern wet mountain zone (EWMZ) and northern dry mountain zone (NDMZ), although without a significant pattern. A weak positive correlation was observed in the western dry mountain zone (WDMZ). In contrast, the Sulaiman piedmont zone (SPMZ) presented minor variations in abundance, indicating that phosphorus, in conjunction with other edaphic and climatic factors, affects Mazri forest distribution and abundance. Further research is needed to investigate the combined effects of various soil nutrients and climatic factors on the distribution, abundance, and functional traits of Mazri forests across different regions. Full article
Show Figures

Figure 1

24 pages, 4793 KB  
Article
Developing Rainfall Spatial Distribution for Using Geostatistical Gap-Filled Terrestrial Gauge Records in the Mountainous Region of Oman
by Mahmoud A. Abd El-Basir, Yasser Hamed, Tarek Selim, Ronny Berndtsson and Ahmed M. Helmi
Water 2025, 17(18), 2695; https://doi.org/10.3390/w17182695 - 12 Sep 2025
Viewed by 959
Abstract
Arid mountainous regions are vulnerable to extreme hydrological events such as floods and droughts. Providing accurate and continuous rainfall records with no gaps is crucial for effective flood mitigation and water resource management in these and downstream areas. Satellite data and geospatial interpolation [...] Read more.
Arid mountainous regions are vulnerable to extreme hydrological events such as floods and droughts. Providing accurate and continuous rainfall records with no gaps is crucial for effective flood mitigation and water resource management in these and downstream areas. Satellite data and geospatial interpolation can be employed for this purpose and to provide continuous data series. However, it is essential to thoroughly assess these methods to avoid an increase in errors and uncertainties in the design of flood protection and water resource management systems. The current study focuses on the mountainous region in northern Oman, which covers approximately 50,000 square kilometers, accounting for 16% of Oman’s total area. The study utilizes data from 279 rain gauges spanning from 1975 to 2009, with varying annual data gaps. Due to the limited accuracy of satellite data in arid and mountainous regions, 51 geospatial interpolations were used to fill data gaps to yield maximum annual and total yearly precipitation data records. The root mean square error (RMSE) and correlation coefficient (R) were used to assess the most suitable geospatial interpolation technique. The selected geospatial interpolation technique was utilized to generate the spatial distribution of annual maxima and total yearly precipitation over the study area for the period from 1975 to 2009. Furthermore, gamma, normal, and extreme value families of probability density functions (PDFs) were evaluated to fit the rain gauge gap-filled datasets. Finally, maximum annual precipitation values for return periods of 2, 5, 10, 25, 50, and 100 years were generated for each rain gauge. The results show that the geostatistical interpolation techniques outperformed the deterministic interpolation techniques in generating the spatial distribution of maximum and total yearly records over the study area. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

15 pages, 5208 KB  
Article
Chain-Spectrum Analysis of Land Use/Cover Change Based on Vector Tracing Method in Northern Oman
by Siyu Zhou and Caihong Ma
Land 2025, 14(9), 1740; https://doi.org/10.3390/land14091740 - 27 Aug 2025
Viewed by 889
Abstract
Land use/cover (LUCC) change in arid oasis–desert ecotones has significant implications for spatial governance in ecologically fragile regions. To better capture the temporal and spatial complexity of land transitions, this study developed a vector tracing method by integrating time-series remote sensing data with [...] Read more.
Land use/cover (LUCC) change in arid oasis–desert ecotones has significant implications for spatial governance in ecologically fragile regions. To better capture the temporal and spatial complexity of land transitions, this study developed a vector tracing method by integrating time-series remote sensing data with vector-based transfer pathways. Analysis of northern Oman from 1995 to 2020 revealed the following: (1) Arable land and impervious surfaces expanded from 0.51% to 1.09% and from 0.31% to 0.98%, respectively, while sand declined from 99.03% to 97.01%. Spatially, arable land was concentrated in piedmont irrigation zones, impervious surfaces near coastal cities, and shrubland and grassland along the Al-Hajar Mountains, forming a complementary land use mosaic. (2) Human activities were the dominant driver, with typical one-way chains accounting for 69.76% of total change. Sand was mainly transformed into arable land (7C1, 7D1, 7E1; where the first part denotes the original type, the letter denotes the year of change, and the last digit denotes the new type), impervious surfaces (7C6, 7D6, 7E6), and shrubland (7E4). (3) Water scarcity and an arid climate remained primary constraints, manifested in typical reciprocating chains in the oasis–desert interface (7D1E7, 7A1B7, 7C1D7) and in the arid vegetation zone along the Al-Hajar Mountain foothills (7D3E7, 7C3D7), together accounting for 24.50% of total change. (4) The region exhibited coordinated transitions among oasis, urban, and ecological land, avoiding the common conflict of cropland loss to urbanization. During the study period, transitions among arable land, impervious surfaces, forest, shrubland, and wetland were rare (Type 16: 3.31%, Type 82: 2.89%, Type 12: 0.04%, Type 18: 0.01%). The case of northern Oman provides a valuable reference for collaborative spatial governance in ecologically fragile arid zones. Future research should integrate socio-economic drivers, climate change projections, and higher-temporal-resolution data to enhance the applicability of the chain-spectrum method in other arid regions. Full article
Show Figures

Figure 1

28 pages, 13786 KB  
Article
Understanding the Relationship between Large-Scale Fold Structures and Small-Scale Fracture Patterns: A Case Study from the Oman Mountains
by Mohammed H. N. Al-Kindi
Geosciences 2020, 10(12), 490; https://doi.org/10.3390/geosciences10120490 - 4 Dec 2020
Cited by 8 | Viewed by 4622
Abstract
Considering the foreland fold belt of the Salakh Arch in the northern Oman Mountains, predictions made from two-dimensional (2D) restorations and geometrical analyses are tested here to assess the relationship between large-scale folds and small-scale fractures. The Salakh Arch is composed of six [...] Read more.
Considering the foreland fold belt of the Salakh Arch in the northern Oman Mountains, predictions made from two-dimensional (2D) restorations and geometrical analyses are tested here to assess the relationship between large-scale folds and small-scale fractures. The Salakh Arch is composed of six anticlines that are interpreted as faulted detachment folds. They have an overall stratigraphy of a 2-km-thick carbonate platform underlain by more than 1.5 km of interbedded sandstone and shale sequences. These sequences are most likely detached on a regionally extensive evaporite horizon. The folding of the Salakh Arch structures most likely occurred during the Neogene Period, and perhaps partly in the early Quaternary Period. This is evident from the thrusting of the Late Neogene Barzaman Formation which was deposited during the Late Neogene Period. Robust outcrop and subsurface fracture data are used to test these predictions. The results from the study indicate that most fractures are related to the orientation of the local structure, with some sets parallel and some sets perpendicular to local hinge lines. Prefolding regional fractures are also widely distributed, and these were mostly formed during the Late Cretaceous Period. Many pre-existing fractures are associated with faults that formed during the Late Cretaceous Period under a NW–SE compression. The local fractures generally have orientations that are consistent with being formed by the flexural slip/flexural flow of fold limbs and tangential longitudinal strains on fold hinges. These structures can be predicted from finite stratal dips, simple curvatures, and three-dimensional (3D) folding restoration maps. The Gaussian curvatures and 3D faulting restoration maps can be used as proxies for fault-related fractures. Local hinge-related fractures may reflect local tangential longitudinal strain during large-scale fold tightening. Fold structures that have formed at an oblique orientation to the regional shortening direction show additional fracture arrays perpendicular to the hinge, indicating weak axial extension. This is presumed to develop as the arcuate thrust belt of Salakh Arch was amplified. The analysis here illustrates the importance of taking a 3D approach, especially for noncylindrical folds. The protocols developed in this study and their results may have general applicability to investigations of fracture patterns in other folds. Full article
(This article belongs to the Special Issue Tectonics of Oman—from the Precambrian to the Present)
Show Figures

Figure 1

26 pages, 6257 KB  
Article
Spatial-Temporal Assessment of Satellite-Based Rainfall Estimates in Different Precipitation Regimes in Water-Scarce and Data-Sparse Regions
by Alaba Boluwade
Atmosphere 2020, 11(9), 901; https://doi.org/10.3390/atmos11090901 - 25 Aug 2020
Cited by 18 | Viewed by 5762
Abstract
Accurate precipitation measurement is very important for socio-hydrological resilience in the face of frequent extreme weather events such as cyclones. This study evaluates the performance of two satellite products: the Tropical Rainfall Measuring Mission (TRMM 3B43V7) Multi-satellite Precipitation Analysis (TMPA, hereafter: TRMM) and [...] Read more.
Accurate precipitation measurement is very important for socio-hydrological resilience in the face of frequent extreme weather events such as cyclones. This study evaluates the performance of two satellite products: the Tropical Rainfall Measuring Mission (TRMM 3B43V7) Multi-satellite Precipitation Analysis (TMPA, hereafter: TRMM) and the Integrated Multi-satellite Retrievals for GPM (IMERG, Final Run V06, hereafter: GPM) in the Sultanate of Oman. Oman is an arid country that generally has few rainy days, but has experienced significant flash floods, tropical storms and cyclones recently, leading to the loss of lives and millions of dollars in damage. Accurate precipitation analysis is crucial in flood monitoring, hydrologic modeling, and the estimation of the water balance of any basin, and the lack of a sufficient weather monitoring network is a barrier to accurate precipitation measurement. Satellite rainfall estimates can be a reliable option in sparse network areas, especially in arid and semi-arid countries. This study evaluated monthly rainfall (hereafter: OBSERVED) levels at 77 meteorological stations from January 2016 to December 2018. The capacity of the TRMM and GPM satellite products to detect monthly rainfall amounts at varying precipitation thresholds was also evaluated. Findings included (1) overall and across the 11 Governorates of Oman, both satellite products show different spatial variability and performance to the OBSERVED at the monthly, seasonal, and annual temporal scales; (2) from the perspective of precipitation detection and frequency bias, GPM showed a similar performance to TRMM at detecting low precipitation (2 mm/month) but was poorer at detecting high precipitation (>30 mm/month) across the entire country as well as in the Northern, Interior, and Dhofar regions; (3) both products show similarities to the OBSERVED through the partitioning of their seasonal time series into a distinct number of homogenous segments; and (4) both products had difficulty reproducing OBSERVED levels in the Dhofar and Interior regions, which is consistent with studies conducted in mountainous and coastal regions. With the aim of reproducing the spatial and temporal structure of OBSERVED in a rugged terrain, the study shows that both satellite products can be used in areas of sparse rain gauges or as additional observation for studies of extreme weather events. Overall, this study suggests that for Oman, both satellite products can be used as proxies for OBSERVED with appropriate bias corrections and GPM is also a reliable replacement for TRMM as a precipitation satellite product. The findings will be useful to the country’s flood resilience and mitigation efforts, especially in areas where there is sparse rain gauge coverage. Full article
Show Figures

Figure 1

18 pages, 1787 KB  
Article
Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman
by Mohammed Saif Al-Kalbani, Martin F. Price, Asma Abahussain, Mushtaque Ahmed and Timothy O'Higgins
Water 2014, 6(10), 3118-3135; https://doi.org/10.3390/w6103118 - 17 Oct 2014
Cited by 55 | Viewed by 14819
Abstract
Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of [...] Read more.
Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, are vulnerable to the potential adverse impacts of environmental and climate change. Besides climatic change, current demographic trends, economic development and related land use changes are exerting pressures and have direct impacts on increasing demands for water resources and their vulnerability. In this study, vulnerability assessment was carried out using guidelines prepared by United Nations Environment Programme (UNEP) and Peking University to evaluate four components of the water resource system: water resources stress, water development pressure, ecological health, and management capacity. The calculated vulnerability index (VI) was high, indicating that the water resources are experiencing levels of stress. Ecosystem deterioration was the dominant parameter and management capacity was the dominant category driving the vulnerability on water resources. The vulnerability assessment will support policy and decision makers in evaluating options to modify existing policies. It will also help in developing long-term strategic plans for climate change mitigation and adaptation measures and implement effective policies for sustainable water resources management, and therefore the sustenance of human wellbeing in the region. Full article
(This article belongs to the Special Issue Water Resources in a Variable and Changing Climate)
Show Figures

Graphical abstract

Back to TopTop