Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = normal intuitionistic fuzzy number (NIFN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5780 KiB  
Article
Some Normal Intuitionistic Fuzzy Heronian Mean Operators Using Hamacher Operation and Their Application
by Guofang Zhang, Zhiming Zhang and Hang Kong
Symmetry 2018, 10(6), 199; https://doi.org/10.3390/sym10060199 - 1 Jun 2018
Cited by 20 | Viewed by 3430
Abstract
Hamacher operation is a generalization of the algebraic and Einstein operation and expresses a family of binary operation in the unit interval [0,1]. Heronian mean can deal with correlations of different criteria or input arguments and does not bring out repeated calculation. The [...] Read more.
Hamacher operation is a generalization of the algebraic and Einstein operation and expresses a family of binary operation in the unit interval [0,1]. Heronian mean can deal with correlations of different criteria or input arguments and does not bring out repeated calculation. The normal intuitionistic fuzzy numbers (NIFNs) can depict normal distribution information in practical decision making. A decision-making problem was researched under the NIFN environment in this study, and a new multi-criteria group decision-making (MCGDM) approach is herein introduced on the basis of Hamacher operation. Firstly, according to Hamacher operation, some operational laws of NIFNs are presented. Secondly, it is noted that Heronian mean not only takes into account mutuality between the attribute values once, but also considers the correlation between input argument and itself. Therefore, in order to aggregate NIFN information, we developed some operators and studied their properties. These operators include Hamacher Heronian mean (NIFHHM), Hamacher weighted Heronian mean (NIFHWHM), Hamacher geometric Heronian mean (NIFHGHM), and Hamacher weighted geometric Heronian mean (NIFHWGHM). Furthermore, we applied the proposed operators to the MCGDM problem and developed a new MCGDM approach. The characteristics of this new approach are that: (1) it is suitable for making a decision under the NIFN environment and it is more reasonable for aggregating the normal distribution data; (2) it utilizes Hamacher operation to provide an effective and powerful MCGDM algorithm and to make more reliable and more flexible decisions under the NIFN circumstance; (3) it uses the Heronian mean operator to deal with interrelations between the attributes or input arguments, and it does not bring about repeated calculation. Therefore, the proposed method can describe the interaction of the different criteria or input arguments and offer some reasonable and reliable MCGDM aggregation operators, which can open avenues for decision making and broaden perspectives of the decision experts. Lastly, an application is given for showing the effectiveness and feasibility of the approach presented in this paper. Full article
Show Figures

Figure 1

28 pages, 733 KiB  
Article
Multiple Attribute Decision-Making Methods Based on Normal Intuitionistic Fuzzy Interaction Aggregation Operators
by Peide Liu
Symmetry 2017, 9(11), 261; https://doi.org/10.3390/sym9110261 - 3 Nov 2017
Cited by 22 | Viewed by 3996
Abstract
Normal intuitionistic fuzzy numbers (NIFNs), which combine the normal fuzzy number (NFN) with intuitionistic number, can easily express the stochastic fuzzy information existing in real decision making, and power-average (PA) operator can consider the relationships of different attributes by assigned weighting vectors which [...] Read more.
Normal intuitionistic fuzzy numbers (NIFNs), which combine the normal fuzzy number (NFN) with intuitionistic number, can easily express the stochastic fuzzy information existing in real decision making, and power-average (PA) operator can consider the relationships of different attributes by assigned weighting vectors which depend upon the input arguments. In this paper, we extended PA operator to process the NIFNs. Firstly, we defined some basic operational rules of NIFNs by considering the interaction operations of intuitionistic fuzzy sets (IFSs), established the distance between two NIFNs, and introduced the comparison method of NIFNs. Then, we proposed some new aggregation operators, including normal intuitionistic fuzzy weighted interaction averaging (NIFWIA) operator, normal intuitionistic fuzzy power interaction averaging (NIFPIA) operator, normal intuitionistic fuzzy weighted power interaction averaging (NIFWPIA) operator, normal intuitionistic fuzzy generalized power interaction averaging (NIFGPIA) operator, and normal intuitionistic fuzzy generalized weighted power interaction averaging (NIFGWPIA) operator, and studied some properties and some special cases of them. Based on these operators, we developed a decision approach for multiple attribute decision-making (MADM) problems with NIFNs. The significant characteristics of the proposed method are that: (1) it is easier to describe the uncertain information than the existing fuzzy sets and stochastic variables; (2) it used the interaction operations in part of IFSs which could overcome the existing weaknesses in operational rules of NIFNs; (3) it adopted PA operator which could relieve the influence of unreasonable data given by biased decision makers; and (4) it made the decision-making results more flexible and reliable because it was with generalized parameter which could be regard as the risk attitude value of decision makers. Finally, an illustrative example is given to verify its feasibility, and to compare with the existing methods. Full article
Show Figures

Figure 1

Back to TopTop