Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = non-sinusoidal breathing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1480 KB  
Article
Work of Breathing for Aviators: A Missing Link in Human Performance
by Victoria Ribeiro Rodrigues, Rheagan A. Pratt, Chad L. Stephens, David J. Alexander and Nicholas J. Napoli
Life 2024, 14(11), 1388; https://doi.org/10.3390/life14111388 - 28 Oct 2024
Cited by 2 | Viewed by 1877
Abstract
In this study, we explore the work of breathing (WoB) experienced by aviators during the Anti-G Straining Maneuver (AGSM) to improve pilot safety and performance. Traditional airflow models of WoB fail to adequately distinguish between breathing rate and inspiratory frequency, leading to potentially [...] Read more.
In this study, we explore the work of breathing (WoB) experienced by aviators during the Anti-G Straining Maneuver (AGSM) to improve pilot safety and performance. Traditional airflow models of WoB fail to adequately distinguish between breathing rate and inspiratory frequency, leading to potentially inaccurate assessments. This mismatch can have serious implications, particularly in critical flight situations where understanding the true respiratory workload is essential for maintaining performance. To address these limitations, we used a non-sinusoidal model that captures the complexities of WoB under high inspiratory frequencies and varying dead space conditions. Our findings indicate that the classical airflow model tends to underestimate WoB, particularly at elevated inspiratory frequencies ranging from 0.5 to 2 Hz, where resistive forces play a significant role and elastic forces become negligible. Additionally, we show that an increase in dead space, coupled with high-frequency breathing, elevates WoB, heightening the risk of dyspnea among pilots. Interestingly, our analysis reveals that higher breathing rates lead to a decrease in total WoB, an unexpected finding suggesting that refining breathing patterns could help pilots optimize their energy expenditure. This research highlights the importance of examining the relationship between alveolar ventilation, breathing rate, and inspiratory frequency in greater depth within realistic flight scenarios. These insights indicate the need for targeted training programs and adaptive life-support systems to better equip pilots for managing respiratory challenges in high-stress situations. Ultimately, our research lays the groundwork for enhancing respiratory support for aviators, contributing to safer and more efficient flight operations. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

20 pages, 7311 KB  
Article
Human Respiration Rate Measurement with High-Speed Digital Fringe Projection Technique
by Anna Lena Lorenz and Song Zhang
Sensors 2023, 23(21), 9000; https://doi.org/10.3390/s23219000 - 6 Nov 2023
Cited by 2 | Viewed by 3556
Abstract
This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion [...] Read more.
This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion from the chest wall and abdomen, and the analysis algorithms extract respiratory parameters. The system achieved a high Signal-to-Noise Ratio (SNR) of 37 dB with an ideal sinusoidal respiration signal. Experimental results demonstrated that a mean correlation of 0.95 and a mean Root-Mean-Square Error (RMSE) of 0.11 breaths per minute (bpm) were achieved when comparing to a reference signal obtained from a spirometer. Full article
(This article belongs to the Special Issue Optical Instruments and Sensors and Their Applications)
Show Figures

Figure 1

19 pages, 4476 KB  
Article
Design and Evaluation of a Low-Cost Electromechanical System to Test Dynamic Performance of Force Sensors at Low Frequencies
by Daniele Esposito, Jessica Centracchio, Emilio Andreozzi, Paolo Bifulco and Gaetano D. Gargiulo
Machines 2022, 10(11), 1017; https://doi.org/10.3390/machines10111017 - 2 Nov 2022
Cited by 7 | Viewed by 3398
Abstract
Piezoresistive or piezoelectric force sensors are widely available today. These sensors are preferred to loadcells because of their extremely reduced size, slimness, and low cost, which allow their easy inclusion in a large variety of devices including wearables. In particular, many applications are [...] Read more.
Piezoresistive or piezoelectric force sensors are widely available today. These sensors are preferred to loadcells because of their extremely reduced size, slimness, and low cost, which allow their easy inclusion in a large variety of devices including wearables. In particular, many applications are devoted to monitoring human body movements, such as those related to breathing, muscle contraction, walking, etc. However, such sensors offer variable performance, and they need to be individually calibrated and tested to ensure accurate measurements. An automated electromechanical system that allows simple mechanical tests of force sensors is proposed. The system by means of an electrical motor; a gear box; a connecting rod-crank mechanism; two pistons, and a coupling spring between them, impress sinusoidal axial forces onto the sensor under test. The system is designed as modular so that it can be customized: the force range to which the sensor is subjected, the frequency range, and the coupler with the sensor can be changed to resemble the actual application context. The actual force (read from a loadcell coupled to the sensor under test), a piston displacement, and the sensor output are simultaneously recorded. The electromechanical system generates nearly pure sinusoidal stresses at varying low frequencies (mean total harmonic distortion of 2.77%). The energy dissipated for a single stress cycle was 3.62 gf mm on average. The developed system was used to test a Force Sensitive Resistor (FSR)-based sensor and a piezoelectric (PZT) sensor. The tests revealed significant differences from the actual force values (particularly at very low frequencies), output drifts of the FSR sensor in measurements, and non-linear behaviors. The system was found to be able to provide dynamic performances, accurate calibration, and non-linear behavior of the individual sensor. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

17 pages, 5482 KB  
Article
Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors
by Muhammad Husaini, Latifah Munirah Kamarudin, Ammar Zakaria, Intan Kartika Kamarudin, Muhammad Amin Ibrahim, Hiromitsu Nishizaki, Masahiro Toyoura and Xiaoyang Mao
Sensors 2022, 22(14), 5249; https://doi.org/10.3390/s22145249 - 13 Jul 2022
Cited by 27 | Viewed by 7465
Abstract
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a [...] Read more.
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

Back to TopTop