Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = non-ergodic universe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7048 KiB  
Article
The Pathologically Evolving Aggregation-State of Cells in Cancerous Tissues as Interpreted by Fractal and Multi-Fractal Dispersion Theory in Saturated Porous Formations
by Marilena Pannone
Bioengineering 2024, 11(5), 469; https://doi.org/10.3390/bioengineering11050469 - 8 May 2024
Viewed by 1614
Abstract
A recent author’s fractal fluid-dynamic dispersion theory in porous media has focused on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic constant) component of [...] Read more.
A recent author’s fractal fluid-dynamic dispersion theory in porous media has focused on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic constant) component of a properly normalized version of these coefficients exhibits a clearly detectable minimum in correspondence with the same fractal dimension (d ≅ 1.7) that seems to characterize the diffusion-limited aggregation state of cells in advanced stages of cancerous lesion progression. That circumstance suggests that such a critical fractal dimension, which is also reminiscent of the colloidal state of solutions (and may therefore identify the microscale architecture of both living and non-living two-phase systems in state transition conditions) may actually represent a sort of universal nature imprint. Additionally, it suggests that the closed-form analytical solution that was provided for the effective macrodispersion coefficients in fractal porous media may be a reliable candidate as a physically-based descriptor of blood perfusion dynamics in healthy as well as cancerous tissues. In order to evaluate the biological meaningfulness of this specific fluid-dynamic parameter, a preliminary validation is performed by comparison with the results of imaging-based clinical surveys. Moreover, a multifractal extension of the theory is proposed and discussed in view of a perspective interpretative diagnostic utilization. Full article
Show Figures

Graphical abstract

12 pages, 309 KiB  
Article
Is There a Fourth Law for Non-Ergodic Systems That Do Work to Construct Their Expanding Phase Space?
by Stuart Kauffman
Entropy 2022, 24(10), 1383; https://doi.org/10.3390/e24101383 - 28 Sep 2022
Cited by 20 | Viewed by 3846
Abstract
Substantial grounds exist to doubt the universal validity of the Newtonian Paradigm that requires a pre-stated, fixed phase space. Therefore, the Second Law of Thermodynamics, stated only for fixed phase spaces, is also in doubt. The validity of the Newtonian Paradigm may stop [...] Read more.
Substantial grounds exist to doubt the universal validity of the Newtonian Paradigm that requires a pre-stated, fixed phase space. Therefore, the Second Law of Thermodynamics, stated only for fixed phase spaces, is also in doubt. The validity of the Newtonian Paradigm may stop at the onset of evolving life. Living cells and organisms are Kantian Wholes that achieve constraint closure, so do thermodynamic work to construct themselves. Evolution constructs an ever-expanding phase space. Thus, we can ask the free energy cost per added degree of freedom. That cost is roughly linear or sublinear in the mass constructed. However, the resulting expansion of the phase space is exponential or even hyperbolic. Thus, the evolving biosphere does thermodynamic work to construct itself into an ever-smaller sub-domain of its ever-expanding phase space at ever less free energy cost per added degree of freedom. The universe is not correspondingly disordered. Entropy, remarkably, really does decrease. A testable implication of this, termed here the Fourth Law of Thermodynamics, is that at constant energy input, the biosphere will construct itself into an ever more localized subregion of its ever-expanding phase space. This is confirmed. The energy input from the sun has been roughly constant for the 4 billion years since life started to evolve. The localization of our current biosphere in its protein phase space is at least 10–2540. The localization of our biosphere with respect to all possible molecules of CHNOPS comprised of up to 350,000 atoms is also extremely high. The universe has not been correspondingly disordered. Entropy has decreased. The universality of the Second Law fails. Full article
(This article belongs to the Section Thermodynamics)
110 pages, 1134 KiB  
Review
Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems
by Anatolij K. Prykarpatski
Universe 2022, 8(5), 288; https://doi.org/10.3390/universe8050288 - 20 May 2022
Cited by 6 | Viewed by 2442
Abstract
This review is devoted to the universal algebraic and geometric properties of the non-relativistic quantum current algebra symmetry and to their representations subject to applications in describing geometrical and analytical properties of quantum and classical integrable Hamiltonian systems of theoretical and mathematical physics. [...] Read more.
This review is devoted to the universal algebraic and geometric properties of the non-relativistic quantum current algebra symmetry and to their representations subject to applications in describing geometrical and analytical properties of quantum and classical integrable Hamiltonian systems of theoretical and mathematical physics. The Fock space, the non-relativistic quantum current algebra symmetry and its cyclic representations on separable Hilbert spaces are reviewed and described in detail. The unitary current algebra family of operators and generating functional equations are described. A generating functional method to constructing irreducible current algebra representations is reviewed, and the ergodicity of the corresponding representation Hilbert space measure is mentioned. The algebraic properties of the so called coherent states are also reviewed, generated by cyclic representations of the Heisenberg algebra on Hilbert spaces. Unbelievable and impressive applications of coherent states to the theory of nonlinear dynamical systems on Hilbert spaces are described, along with their linearization and integrability. Moreover, we present a further development of these results within the modern Lie-algebraic approach to nonlinear dynamical systems on Poissonian functional manifolds, which proved to be both unexpected and important for the classification of integrable Hamiltonian flows on Hilbert spaces. The quantum current Lie algebra symmetry properties and their functional representations, interpreted as a universal algebraic structure of symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics on functional manifolds, are analyzed in detail. Based on the current algebra symmetry structure and their functional representations, an effective integrability criterion is formulated for a wide class of completely integrable Hamiltonian systems on functional manifolds. The related algebraic structure of the Poissonian operators and an effective algorithm of their analytical construction are described. The current algebra representations in separable Hilbert spaces and the factorized structure of quantum integrable many-particle Hamiltonian systems are reviewed. The related current algebra-based Hamiltonian reconstruction of the many-particle oscillatory and Calogero–Moser–Sutherland quantum models are reviewed and discussed in detail. The related quasi-classical quantum current algebra density representations and the collective variable approach in equilibrium statistical physics are reviewed. In addition, the classical Wigner type current algebra representation and its application to non-equilibrium classical statistical mechanics are described, and the construction of the Lie–Poisson structure on the phase space of the infinite hierarchy of distribution functions is presented. The related Boltzmann–Bogolubov type kinetic equation for the generating functional of many-particle distribution functions is constructed, and the invariant reduction scheme, compatible with imposed correlation functions constraints, is suggested and analyzed in detail. We also review current algebra functional representations and their geometric structure subject to the analytical description of quasi-stationary hydrodynamic flows and their magneto-hydrodynamic generalizations. A unified geometric description of the ideal idiabatic liquid dynamics is presented, and its Hamiltonian structure is analyzed. A special chapter of the review is devoted to recent results on the description of modified current Lie algebra symmetries on torus and their Lie-algebraic structures, related to integrable so-called heavenly type spatially many-dimensional dynamical systems on functional manifolds. Full article
(This article belongs to the Special Issue Selected Topics in Gravity, Field Theory and Quantum Mechanics)
21 pages, 3539 KiB  
Article
Dendrogramic Representation of Data: CHSH Violation vs. Nonergodicity
by Oded Shor, Felix Benninger and Andrei Khrennikov
Entropy 2021, 23(8), 971; https://doi.org/10.3390/e23080971 - 28 Jul 2021
Cited by 7 | Viewed by 3384
Abstract
This paper is devoted to the foundational problems of dendrogramic holographic theory (DH theory). We used the ontic–epistemic (implicate–explicate order) methodology. The epistemic counterpart is based on the representation of data by dendrograms constructed with hierarchic clustering algorithms. The ontic universe is described [...] Read more.
This paper is devoted to the foundational problems of dendrogramic holographic theory (DH theory). We used the ontic–epistemic (implicate–explicate order) methodology. The epistemic counterpart is based on the representation of data by dendrograms constructed with hierarchic clustering algorithms. The ontic universe is described as a p-adic tree; it is zero-dimensional, totally disconnected, disordered, and bounded (in p-adic ultrametric spaces). Classical–quantum interrelations lose their sharpness; generally, simple dendrograms are “more quantum” than complex ones. We used the CHSH inequality as a measure of quantum-likeness. We demonstrate that it can be violated by classical experimental data represented by dendrograms. The seed of this violation is neither nonlocality nor a rejection of realism, but the nonergodicity of dendrogramic time series. Generally, the violation of ergodicity is one of the basic features of DH theory. The dendrogramic representation leads to the local realistic model that violates the CHSH inequality. We also considered DH theory for Minkowski geometry and monitored the dependence of CHSH violation and nonergodicity on geometry, as well as a Lorentz transformation of data. Full article
(This article belongs to the Special Issue The Philosophy of Quantum Physics)
Show Figures

Figure 1

22 pages, 380 KiB  
Article
An Integral Representation of the Logarithmic Function with Applications in Information Theory
by Neri Merhav and Igal Sason
Entropy 2020, 22(1), 51; https://doi.org/10.3390/e22010051 - 30 Dec 2019
Cited by 8 | Viewed by 4629
Abstract
We explore a well-known integral representation of the logarithmic function, and demonstrate its usefulness in obtaining compact, easily computable exact formulas for quantities that involve expectations and higher moments of the logarithm of a positive random variable (or the logarithm of a sum [...] Read more.
We explore a well-known integral representation of the logarithmic function, and demonstrate its usefulness in obtaining compact, easily computable exact formulas for quantities that involve expectations and higher moments of the logarithm of a positive random variable (or the logarithm of a sum of i.i.d. positive random variables). The integral representation of the logarithm is proved useful in a variety of information-theoretic applications, including universal lossless data compression, entropy and differential entropy evaluations, and the calculation of the ergodic capacity of the single-input, multiple-output (SIMO) Gaussian channel with random parameters (known to both transmitter and receiver). This integral representation and its variants are anticipated to serve as a useful tool in additional applications, as a rigorous alternative to the popular (but non-rigorous) replica method (at least in some situations). Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

14 pages, 1155 KiB  
Review
Approach of Complexity in Nature: Entropic Nonuniqueness
by Constantino Tsallis
Axioms 2016, 5(3), 20; https://doi.org/10.3390/axioms5030020 - 12 Aug 2016
Cited by 19 | Viewed by 5265
Abstract
Boltzmann introduced in the 1870s a logarithmic measure for the connection between the thermodynamical entropy and the probabilities of the microscopic configurations of the system. His celebrated entropic functional for classical systems was then extended by Gibbs to the entire phase space of [...] Read more.
Boltzmann introduced in the 1870s a logarithmic measure for the connection between the thermodynamical entropy and the probabilities of the microscopic configurations of the system. His celebrated entropic functional for classical systems was then extended by Gibbs to the entire phase space of a many-body system and by von Neumann in order to cover quantum systems, as well. Finally, it was used by Shannon within the theory of information. The simplest expression of this functional corresponds to a discrete set of W microscopic possibilities and is given by S B G = k i = 1 W p i ln p i (k is a positive universal constant; BG stands for Boltzmann–Gibbs). This relation enables the construction of BGstatistical mechanics, which, together with the Maxwell equations and classical, quantum and relativistic mechanics, constitutes one of the pillars of contemporary physics. The BG theory has provided uncountable important applications in physics, chemistry, computational sciences, economics, biology, networks and others. As argued in the textbooks, its application in physical systems is legitimate whenever the hypothesis of ergodicity is satisfied, i.e., when ensemble and time averages coincide. However, what can we do when ergodicity and similar simple hypotheses are violated, which indeed happens in very many natural, artificial and social complex systems. The possibility of generalizing BG statistical mechanics through a family of non-additive entropies was advanced in 1988, namely S q = k 1 i = 1 W p i q q 1 , which recovers the additive S B G entropy in the q→ 1 limit. The index q is to be determined from mechanical first principles, corresponding to complexity universality classes. Along three decades, this idea intensively evolved world-wide (see the Bibliography in http://tsallis.cat.cbpf.br/biblio.htm) and led to a plethora of predictions, verifications and applications in physical systems and elsewhere. As expected, whenever a paradigm shift is explored, some controversy naturally emerged, as well, in the community. The present status of the general picture is here described, starting from its dynamical and thermodynamical foundations and ending with its most recent physical applications. Full article
Show Figures

Figure 1

Back to TopTop