Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = non-enveloped foodborne virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 856 KB  
Article
Inactivation of Aerosolized Hepatitis A Viral Droplets on Food Contact Surfaces by Ultraviolet-Light-Emitting Diodes at 255 nm and 279 nm
by Breanna Polen, Ankit Patras, Brahmaiah Pendyala and Doris H. D’Souza
Foods 2025, 14(11), 1899; https://doi.org/10.3390/foods14111899 - 27 May 2025
Viewed by 1028
Abstract
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses [...] Read more.
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses for aerosolized HAV inactivation. This study evaluates the UV-C LED doses for the inactivation of aerosolized hepatitis A virus (HAV) deposited on stainless-steel and glass discs. HAV was aseptically deposited onto stainless-steel or glass discs (1.27 cm diameter) using a nebulizer within a chamber followed by treatments for up to 1.5 min with 255 nm (surface dose = 0–76.5 mJ/cm2) or 279 nm (surface dose = 0–8.1 mJ/cm2) UV-C LED. Plaque assays were used to enumerate infectious titers of recovered viruses and data from three replicates were statistically analyzed. The calculated linear D10-value (UV-C dose for a 1-log reduction in aerosolized deposits) for HAV by 255 nm UV-C LED was 47.39 ± 7.40 and 40.0 ± 2.94 mJ/cm2 (R2 = 0.94 and 0.91) and using 279 nm UV-C LED were 6.60 ± 0.27 and 5.57 ± 0.74 mJ/cm2 (R2 = 0.98 and 0.94) on stainless-steel and glass discs, respectively. The non-linear Weibull model showed δ (dose needed for a 1-log reduction in aerosolized HAV deposits) values for HAV of 29.69 ± 5.49 and 35.25 ± 15.01 mJ/cm2 by 255 nm UV-C LED (R2 = 0.99 and 0.92) and 6.67 ± 0.63 and 5.21 ± 1.25 mJ/cm2 by 279 nm UV-C LED (R2 = 0.98 and 0.95) on stainless-steel and glass discs, respectively. These data indicate that 279 nm UV-C LED showed higher efficiency for HAV inactivation than 255 nm UV-C LED, and that Weibull models were a better fit when tailing was observed. This study provides the inactivation data needed to aid in designing UV-C LED systems for delivering doses required to inactivate bio-aerosolized HAV deposits on stainless-steel and glass. Full article
(This article belongs to the Special Issue Antimicrobial Strategies in Food Processing, Production and Storage)
Show Figures

Figure 1

18 pages, 2281 KB  
Article
A Reliable Multifaceted Solution against Foodborne Viral Infections: The Case of RiLK1 Decapeptide
by Emanuela Galatola, Bruna Agrillo, Marta Gogliettino, Gianna Palmieri, Serena Maccaroni, Teresa Vicenza, Yolande T. R. Proroga, Andrea Mancusi, Simona Di Pasquale, Elisabetta Suffredini and Loredana Cozzi
Molecules 2024, 29(10), 2305; https://doi.org/10.3390/molecules29102305 - 14 May 2024
Cited by 5 | Viewed by 1853
Abstract
Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized [...] Read more.
Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized as promising antiviral agents. Indeed, while the antibacterial and antifungal effects of these molecules have been widely reported, their use as potential antiviral agents has not yet been fully investigated. Herein, the antiviral activity of previously identified or newly designed AMPs was evaluated against the non-enveloped RNA viruses, hepatitis A virus (HAV) and murine norovirus (MNV), a surrogate for human norovirus. Moreover, specific assays were performed to recognize at which stage of the viral infection cycle the peptides could function. The results showed that almost all peptides displayed virucidal effects, with about 90% of infectivity reduction in HAV or MNV. However, the decapeptide RiLK1 demonstrated, together with its antibacterial and antifungal properties, a notable reduction in viral infection for both HAV and MNV, possibly through direct interaction with viral particles causing their damage or hindering the recognition of cellular receptors. Hence, RiLK1 could represent a versatile antimicrobial agent effective against various foodborne pathogens including viruses, bacteria, and fungi. Full article
(This article belongs to the Collection Bioactive Natural Molecules from Functional Foods)
Show Figures

Figure 1

Back to TopTop