Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = non-communicalbe diseases of civilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 2264 KiB  
Review
Milk’s Role as an Epigenetic Regulator in Health and Disease
by Bodo C. Melnik and Gerd Schmitz
Diseases 2017, 5(1), 12; https://doi.org/10.3390/diseases5010012 - 15 Mar 2017
Cited by 82 | Viewed by 21513
Abstract
It is the intention of this review to characterize milk’s role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an [...] Read more.
It is the intention of this review to characterize milk’s role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic “doping system” of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow’s milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow’s milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer. Full article
Show Figures

Figure 1

Back to TopTop