Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = non-banded spherulites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14149 KiB  
Article
Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films
by Denis V. Anokhin, Dana S. Plieva, Martin Rosenthal, Andrei V. Churakov and Dimitri A. Ivanov
Crystals 2025, 15(1), 94; https://doi.org/10.3390/cryst15010094 - 20 Jan 2025
Viewed by 995
Abstract
Synchrotron microbeam X-ray diffraction was employed to investigate the local-scale structure and solid-state phase transformation within individual spherulites of poly(vinylidene fluoride) (PVDF). In thin, non-oriented films, PVDF crystallizes into α and γ-phases, forming distinct spherulitic morphologies: large, banded α-spherulites and smaller, irregular “mixed” [...] Read more.
Synchrotron microbeam X-ray diffraction was employed to investigate the local-scale structure and solid-state phase transformation within individual spherulites of poly(vinylidene fluoride) (PVDF). In thin, non-oriented films, PVDF crystallizes into α and γ-phases, forming distinct spherulitic morphologies: large, banded α-spherulites and smaller, irregular “mixed” spherulites dominated by the γ-phase. For samples crystallized at high undercooling (160 °C), the mixed spherulites primarily consisted of the γ-phase, with only a minor fraction of α-lamellae localized at the spherulite boundaries. At higher crystallization temperatures (165 °C), the α-phase was entirely absent from the mixed spherulites. High-temperature annealing induced a phase transformation from the α-phase to the γ-phase, initiating at the interface between α- and γ-spherulites. The transformation propagated radially along the b-axis of the α-spherulite, while its characteristic banded morphology remained intact. Radial scanning with an X-ray microbeam provided spatially resolved mapping of the structural transition within the α-spherulite at the micrometer scale, offering detailed insights into the transformation mechanism and its impact on the spherulitic structure. The fast crystal growth direction remained unaltered during the transition, suggesting minimal material transport and maintaining structural coherence. Full article
(This article belongs to the Special Issue Advanced Research on Macromolecular Crystals (2nd Edition))
Show Figures

Figure 1

28 pages, 40956 KiB  
Article
Transcrystalline Mechanism of Banded Spherulites Development in Melt-Crystallized Semicrystalline Polymers
by Theodor Stern
Polymers 2024, 16(17), 2411; https://doi.org/10.3390/polym16172411 - 25 Aug 2024
Cited by 3 | Viewed by 1824
Abstract
The decades-long paradigm of continuous and perpetual lamellar twisting constituting banded spherulites has been found to be inconsistent with several recent studies showing discontinuity regions between consecutive bands, for which, however, no explanation has been found. The present research demonstrates, in three different [...] Read more.
The decades-long paradigm of continuous and perpetual lamellar twisting constituting banded spherulites has been found to be inconsistent with several recent studies showing discontinuity regions between consecutive bands, for which, however, no explanation has been found. The present research demonstrates, in three different semicrystalline polymers (HDPE, PEG10000 and Pluronic F-127), that sequential transcrystallinity is the predominant mechanism of banded spherulite formation, heterogeneously nucleated on intermittent self-shear-oriented amorphous layers excluded during the crystals’ growth. It is hereby demonstrated that a transcrystalline layer can be nucleated on amorphous self-shear-oriented polymer chains in the melt, by a local melt flow in the bulk or in contact with any interface—even in contact with the interface with air, e.g., in contact with an entrapped air bubble or at the edges of the sample—or nucleated following the multiple directions and orientations induced by a turbulent flow. The bilateral excessive local exclusion of amorphous non-crystallizable material, following a short period of initial non-banded growth, is found to be the source of dislocations leading to spirally banded spherulites, through the transcrystalline layers’ nucleation thereon. The present research reveals and demonstrates the sequential transcrystalline morphology of banded spherulites and the mechanism of its formation, which may lead to new insights in the understanding and design of polymer processing for specific applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

44 pages, 8881 KiB  
Article
Combustion Behavior of Cellulose Ester Fibrous Bundles from Used Cigarette Filters: Kinetic Analysis Study
by Filip Veljković, Vladimir Dodevski, Milena Marinović-Cincović, Suzana Veličković and Bojan Janković
Polymers 2024, 16(11), 1480; https://doi.org/10.3390/polym16111480 - 23 May 2024
Cited by 1 | Viewed by 1416
Abstract
This study is focused on the detailed examination of the combustion properties and kinetic analysis of a cellulose acetate fibrous bundle (CAFB), separated from used cigarette filters. It was shown that the faster rate of CAFB heating allows a large amount of heat [...] Read more.
This study is focused on the detailed examination of the combustion properties and kinetic analysis of a cellulose acetate fibrous bundle (CAFB), separated from used cigarette filters. It was shown that the faster rate of CAFB heating allows a large amount of heat to be supplied to a combustion system in the initial stages, where the increase in heating rate has a positive response to ignition behavior. The best combustion stability of CAFB is achieved at the lowest heating rate. Through the use of different kinetic methods, it was shown that combustion takes place through two series of consecutive reaction steps and one independent single-step reaction. By optimizing the kinetic parameters within the proposed reaction models, it was found that the steps related to the generation of levoglucosenone (LGO) (by catalytic dehydration of levoglucosan (LG)) and acrolein (by breakdown of glycerol during CAFB burning—which was carried out through glycerol adsorption on a TiO2 surface in a the developed dehydration mechanism) represent rate-controlling steps, which are strongly controlled by applied heating rate. Isothermal predictions have shown that CAFB manifests very good long-term stability at 60 °C (which corresponds to storage in a sea shipping container), while at 200 °C, it shows a sudden loss in thermal stability, which is related to the physical properties of the sample. Full article
(This article belongs to the Special Issue Polymer Combustion and Pyrolysis Kinetics)
Show Figures

Graphical abstract

51 pages, 19219 KiB  
Review
Mineralogy, Geochemistry and Genesis of Agate—A Review
by Jens Götze, Robert Möckel and Yuanming Pan
Minerals 2020, 10(11), 1037; https://doi.org/10.3390/min10111037 - 20 Nov 2020
Cited by 57 | Viewed by 22485
Abstract
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of [...] Read more.
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of mineral inclusions and water as both interstitial molecular H2O and silanol groups. Most agate occurrences worldwide are related to SiO2-rich (rhyolites, rhyodacites) and SiO2-poor (andesites, basalts) volcanic rocks, but can also be formed as hydrothermal vein varieties or as silica accumulation during diagenesis in sedimentary rocks. It is assumed that the supply of silica for agate formation is often associated with late- or post-volcanic alteration of the volcanic host rocks. Evidence can be found in association with typical secondary minerals such as clay minerals, zeolites or iron oxides/hydroxides, frequent pseudomorphs (e.g., after carbonates or sulfates) as well as the chemical composition of the agates. For instance, elements of the volcanic rock matrix (Al, Ca, Fe, Na, K) are enriched, but extraordinary high contents of Ge (>90 ppm), B (>40 ppm) and U (>20 ppm) have also been detected. Calculations based on fluid inclusion and oxygen isotope studies point to a range between 20 and 230 °C for agate formation temperatures. The accumulation and condensation of silicic acid result in the formation of silica sols and proposed amorphous silica as precursors for the development of the typical agate micro-structure. The process of crystallisation often starts with spherulitic growth of chalcedony continuing into chalcedony fibers. High concentrations of lattice defects (oxygen and silicon vacancies, silanol groups) detected by cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopy indicate a rapid crystallisation via an amorphous silica precursor under non-equilibrium conditions. It is assumed that the formation of the typical agate microstructure is governed by processes of self-organization. The resulting differences in crystallite size, porosity, kind of silica phase and incorporated color pigments finally cause the characteristic agate banding and colors. Full article
(This article belongs to the Special Issue Agates: Types, Mineralogy, Deposits, Host Rocks, Ages and Genesis)
Show Figures

Figure 1

21 pages, 16715 KiB  
Review
Morphological Control of Polymer Spherulites via Manipulating Radial Lamellar Organization upon Evaporative Crystallization: A Mini Review
by Yiguo Li, Zongbao Wang and Tianbai He
Crystals 2017, 7(4), 115; https://doi.org/10.3390/cryst7040115 - 19 Apr 2017
Cited by 42 | Viewed by 14144
Abstract
Various spherulites or spherulitic crystals are widely encountered in polymeric materials when crystallized from viscous melts or concentrated solutions. However, the microstructures and growth processes are quite complicated and remain unclear and, thus, the formation mechanisms are rather elusive. Here, diverse kinds of [...] Read more.
Various spherulites or spherulitic crystals are widely encountered in polymeric materials when crystallized from viscous melts or concentrated solutions. However, the microstructures and growth processes are quite complicated and remain unclear and, thus, the formation mechanisms are rather elusive. Here, diverse kinds of spherulitic growths and patterns of typical polyesters via evaporative crystallization of solution-cast thin films are delineated after detailed investigating the microstructures and in situ following the developing processes. The spherulitic crystals produced under different evaporation conditions reflect variously optical features, such as the usual Maltese Cross, non-birefringent or half-birefringent concentric-rings, extinction spiral banding, and even a nested ring-banded pattern. Polymer spherulites are composed of stacks of radial fibrillar lamellae, and the diversity of bewitchingly spherulitic morphologies is dominated by the arrangement and organization of radial lamellae, which is predicted to be tunable by modulating the evaporative crystallization processes. The emergence of various types of spherulitic morphologies of the same polymer is attributed to a precise manipulation of the radial lamellar organization by a coupling of structural features and specific crystal evolving courses under confined evaporation environments. The present findings improve dramatically the understanding of the structural development and crystallization mechanism for emergence of diverse polymer spherulitic morphologies. Full article
(This article belongs to the Special Issue Crystal Morphology and Assembly in Spherulites)
Show Figures

Figure 1

Back to TopTop