Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = non-anomeric interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3568 KB  
Article
Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides
by Deborah L. Chance, Wei Wang, James K. Waters and Thomas P. Mawhinney
Microorganisms 2024, 12(4), 801; https://doi.org/10.3390/microorganisms12040801 - 16 Apr 2024
Viewed by 3548
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin [...] Read more.
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host–pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend. Full article
Show Figures

Figure 1

31 pages, 405 KB  
Review
Recent Synthetic Approaches Toward Non-anomeric Spiroketals in Natural Products
by Sylvain Favre, Pierre Vogel and Sandrine Gerber-Lemaire
Molecules 2008, 13(10), 2570-2600; https://doi.org/10.3390/molecules13102570 - 17 Oct 2008
Cited by 63 | Viewed by 20159
Abstract
Many natural products of biological interest contain [6,5]- and [6,6]-spiroketal moieties that can adopt various configurations, benefiting or not from anomeric conformation stabilizing effects. The spiroketal fragments are often important for the biological activity of the compounds containing them. Most stable spiroketal stereoisomers, [...] Read more.
Many natural products of biological interest contain [6,5]- and [6,6]-spiroketal moieties that can adopt various configurations, benefiting or not from anomeric conformation stabilizing effects. The spiroketal fragments are often important for the biological activity of the compounds containing them. Most stable spiroketal stereoisomers, including those benefiting from conformational anomeric effects (gauche conformers can be more stable than anti conformers because of a contra-steric stabilizing effect), are obtained easily under acidic conditions that permit acetal heterolysis (formation of tertiary oxycarbenium ion intermediates). The synthesis of less stable stereoisomers requires stereoselective acetal forming reactions that do not permit their equilibration with their most stable stereoisomers or, in the case of suitably substituted derivatives, concomitant reactions generating tricyclic products that quench the less stable spiroketal conformers. Ingenuous approaches have been recently developed for the synthesis of naturally occurring [6,6]- and [5,6]-nonanomeric spiroketals and analogues. The identification of several parameters that can influence the stereochemical outcome of spirocyclization processes has led to seminal improvements in the selective preparation of the non-anomeric isomers that are discussed herein. This review also gives an up-dated view of conformational anomeric effect which represents a small fraction of the enthalpic anomeric effect that makes gem-dioxy substituted compounds much more stable that their 1,n-dioxy substituted isomers (n > 1). Although models assuming sp3-hybridized oxygen atoms have been very popular (rabbit ears for the two non-bonding electron pairs of oxygen atom), sp2-hybridized oxygen atoms are used to describe the conformational anomeric effect. Full article
(This article belongs to the Special Issue Spiro Compounds)
Show Figures

Graphical abstract

Back to TopTop