Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = nomifensine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 993 KiB  
Article
Blockade of Catecholamine Reuptake in the Prelimbic Cortex Decreases Top-Down Attentional Control in Response to Novel, but not Familiar Appetitive Distracters, within a Timing Paradigm
by Alexander R. Matthews, Mona Buhusi and Catalin V. Buhusi
NeuroSci 2020, 1(2), 99-114; https://doi.org/10.3390/neurosci1020010 - 8 Dec 2020
Cited by 1 | Viewed by 2929
Abstract
Emotionally charged distracters delay timing behavior. Increasing catecholamine levels within the prelimbic cortex has beneficial effects on timing by decreasing the delay after aversive distracters. Here we examined whether increasing catecholamine levels within the prelimbic cortex also protects against the deleterious timing delays [...] Read more.
Emotionally charged distracters delay timing behavior. Increasing catecholamine levels within the prelimbic cortex has beneficial effects on timing by decreasing the delay after aversive distracters. Here we examined whether increasing catecholamine levels within the prelimbic cortex also protects against the deleterious timing delays caused by novel distracters or by familiar appetitive distracters. Rats were trained in a peak-interval procedure and tested in trials with either a novel (unreinforced) distracter, a familiar appetitive (food-reinforced) distracter, or no distracter after being locally infused with catecholamine reuptake blocker nomifensine within the prelimbic cortex. Prelimbic infusion of nomifensine did not alter timing accuracy and precision. However, it increased the delay caused by novel distracters in an inverted-U dose-dependent manner, while being ineffective for appetitive distracters. Together with previous data, these results suggest that catecholaminergic modulation of prelimbic top-down attentional control of interval timing varies with distracter’s valence: prelimbic catecholamines increase attentional control when presented with familiar aversive distracters, have no effect on familiar neutral or familiar appetitive distracters, and decrease it when presented with novel distracters. These findings detail complex interactions between catecholaminergic modulation of attention to timing and nontemporal properties of stimuli, which should be considered when developing therapeutic methods for attentional or affective disorders. Full article
Show Figures

Figure 1

58 pages, 423 KiB  
Review
Monoaminergic Antidepressants in the Relief of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs)
by Guillaume Hache, François Coudore, Alain M. Gardier and Bruno P. Guiard
Pharmaceuticals 2011, 4(2), 285-342; https://doi.org/10.3390/ph4020285 - 26 Jan 2011
Cited by 31 | Viewed by 19208
Abstract
Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, [...] Read more.
Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, the ascending serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus coeruleus; respectively, send projections to the limbic system. Such pathways control many of the psychological functions that are disturbed in depression and in the perception of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the spinal cord, are specifically implicated in the inhibition of nociception providing rationale for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is also involved in the pathophysiology and treatment of depression. Indeed, recent insights have demonstrated a central role for DA in analgesia through an action at both the spinal and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the thalamus, the basal ganglia and the limbic system. In this context, dopaminergic antidepressants (i.e., containing dopaminergic activity), such as bupropion, nomifensine and more recently triple reuptake inhibitors (TRIs), might represent new promising therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, whether the addition of the dopaminergic component produces more robust effects than single- or dual-acting agents, has yet to be demonstrated. This article reviews the main pathways regulating pain transmission in relation with the monoaminergic systems. It then focuses on the current knowledge regarding the in vivo pharmacological properties and mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these antidepressants in analgesia is also addressed in order to highlight the relative contribution of 5-HT, NE and DA to nociception. Full article
(This article belongs to the Special Issue Antidepressants)
Show Figures

Back to TopTop