Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = noble gas isotope geochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3445 KB  
Article
Tracing the Source of Hydrothermal Fluid in Ophiolite-Related Volcanogenic Massive Sulfide Deposits: A Case Study from the Italian Northern Apennines
by Gabriella B. Kiss, Kata Molnár, Zsolt Benkó, Péter Skoda, Zsuzsanna Kapui, Giorgio Garuti, Federica Zaccarini, László Palcsu and György Czuppon
Minerals 2023, 13(1), 8; https://doi.org/10.3390/min13010008 - 21 Dec 2022
Cited by 4 | Viewed by 2644
Abstract
The Italian Northern Apennines contain several Fe-Cu-Zn-bearing, Cyprus-type volcanogenic massive sulfide (VMS) deposits, which significantly contribute to the Cu resources of Italy. The massive sulfide lenses and related stockwork mineralizations are hosted by several levels (from basalt to serpentinite) of the unmetamorphosed ophiolitic [...] Read more.
The Italian Northern Apennines contain several Fe-Cu-Zn-bearing, Cyprus-type volcanogenic massive sulfide (VMS) deposits, which significantly contribute to the Cu resources of Italy. The massive sulfide lenses and related stockwork mineralizations are hosted by several levels (from basalt to serpentinite) of the unmetamorphosed ophiolitic series; therefore, this region offers perfect locations to study the ore-forming hydrothermal system in detail. A combination of fluid inclusion microthermometry, Raman spectroscopy, electron probe analyses (chlorite thermometry) and stable and noble gas isotope geochemistry was used to determine the fluid source of the VMS system at Bargone, Boccassuolo, Campegli, Casali–Monte Loreto, Corchia, Reppia and Vigonzano. This question of the fluid source is the focus of modern VMS research worldwide, as it has a direct influence on the metal content of the deposit. The obtained temperature and compositional data are both in the typical range of VMS systems and basically suggest evolved seawater origin for the mineralizing fluid. Modification of seawater was most commonly due to fluid–rock interaction processes, which happened during long-lasting circulation in the crust. The role of a small amount of magmatic fluid input was traced only at the lower block of Boccassuolo, which may be responsible for its higher ore grade. This fluid origin model is evidenced by O, H and C stable isotopic as well as He, Ne and Ar noble gas isotopic values. Full article
Show Figures

Figure 1

26 pages, 3036 KB  
Review
Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions
by Thomas Smith, P. M. Ranjith, Huaiyu He and Rixiang Zhu
Geosciences 2020, 10(11), 439; https://doi.org/10.3390/geosciences10110439 - 6 Nov 2020
Cited by 9 | Viewed by 7229
Abstract
Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific [...] Read more.
Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios. In the second part, we concentrate on the results obtained by both in situ and laboratory measurements, their complementarity, and the implications for the Martian atmospheric dynamic evolution through the last billions of years. Here, we intend on demonstrating how the various efforts established the Mars-Martian meteorites connection and its significance to our understanding of the red planet. Full article
(This article belongs to the Special Issue Martian Meteorites and Mars Exploration)
Show Figures

Figure 1

Back to TopTop