Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = nitrophenol and nitroanilines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2866 KB  
Article
Study of the Ternary Mixture of Methanol/Formamide/Acetonitrile via Solvatochromic Probes
by Nelson Nunes, Ruben Elvas-Leitão and Filomena Martins
Molecules 2024, 29(1), 246; https://doi.org/10.3390/molecules29010246 - 2 Jan 2024
Cited by 3 | Viewed by 2389
Abstract
Following previous studies, the ternary mixture of methanol/formamide/acetonitrile (MeOH/Formamide/MeCN) was studied using the UV-Vis absorption spectra at 298.15 K with a set of five probes, 4-nitroaniline, 4-nitroanisole, 4-nitrophenol, N,N-dimethyl-4-nitroaniline and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (Reichardt betaine dye), for a total of 22 mole [...] Read more.
Following previous studies, the ternary mixture of methanol/formamide/acetonitrile (MeOH/Formamide/MeCN) was studied using the UV-Vis absorption spectra at 298.15 K with a set of five probes, 4-nitroaniline, 4-nitroanisole, 4-nitrophenol, N,N-dimethyl-4-nitroaniline and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (Reichardt betaine dye), for a total of 22 mole ternary fractions. In addition, nine mole fractions of the underling binary mixtures, MeOH/Formamide and Formamide/MeCN were also tested. Spectroscopic results were used to model the preferential solvation order for each probe in the mixtures. The Kamlet–Taft solvatochromic solvent parameters, α, β, and π*, were also computed through the use of the solvatochromic shifts of the five probe indicators. Moreover, discrepancies in the spectroscopic behavior of 4-nitrophenol in formamide-rich mixtures were observed and analyzed. Full article
Show Figures

Graphical abstract

11 pages, 2780 KB  
Communication
Discrete Au1(0) Stabilized by 15-Crown-5 for High-Efficiency Catalytic Reduction of Nitrophenol and Nitroaniline
by Xing Shen and Kairui Liu
Catalysts 2023, 13(4), 776; https://doi.org/10.3390/catal13040776 - 20 Apr 2023
Cited by 3 | Viewed by 1950
Abstract
Single-atom catalysts (SACs) have been synthesized using a variety of methods in recent years, and they have shown excellent catalytic activities. However, metal atoms show a high tendency to agglomerate in liquid media, making the single atom synthesis more difficult in liquid media. [...] Read more.
Single-atom catalysts (SACs) have been synthesized using a variety of methods in recent years, and they have shown excellent catalytic activities. However, metal atoms show a high tendency to agglomerate in liquid media, making the single atom synthesis more difficult in liquid media. The synthesis of such metal single-atom catalysts that do not have strong ligand coordination is rarely reported in the literature. Herein, we report the facile synthesis of monodispersed Au atoms (Au1) through the reduction in HAuCl4 in 15-crown-5. The complete reduction in HAuCl4 was confirmed through UV-Vis spectroscopy. In addition, the Au was found in a zero valence state after reduction, which was confirmed through XPS and XANES results. Moreover, the dispersion of Au was confirmed as a single atom (Au1) through transmission electron microscopy and spherical aberration electron microscopy. The possible structure of this catalyst was proposed by matching the EXAFS results with the structure of Au1@15-crown-5 as -(OC2H4O)-AuCl2H2. The Au1@15-crown-5 showed high activity (TOF as high as 22,075) in the reduction in nitrophenol and nitroaniline to aminophenol and phenylenediamine by sodium borohydride. Because of the monodispersion of Au atoms, its performance is much better than noble nanoparticles and non-precious metal catalysts. Full article
(This article belongs to the Special Issue Single-Atom Catalysts (SACs))
Show Figures

Figure 1

18 pages, 4028 KB  
Article
Palladium Nanoparticles on Chitosan-Coated Superparamagnetic Manganese Ferrite: A Biocompatible Heterogeneous Catalyst for Nitroarene Reduction and Allyl Carbamate Deprotection
by Mona Ebadi, Nurul Asikin-Mijan, Mohd Suzeren Md. Jamil, Anwar Iqbal, Emad Yousif, Ahmad Rifqi Md Zain, Tengku Hasnan Tengku Aziz and Muhammad Rahimi Yusop
Polymers 2023, 15(1), 232; https://doi.org/10.3390/polym15010232 - 1 Jan 2023
Cited by 10 | Viewed by 4264
Abstract
Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared [...] Read more.
Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFe2O4 catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.1 min−1 and 571.4 min−1, respectively. The catalyst can also be recovered easily by magnetic separation after each reaction. Additionally, the Pd-Chit@MnFe2O4 catalyst performed well in the reductive deprotection of allyl carbamate. Coating the catalyst with chitosan reduced the Pd leaching and its cytotoxicity. Therefore, the catalytic activity of Pd-Chit@MnFe2O4 was proven to be unrestricted in biology conditions. Full article
(This article belongs to the Special Issue Coatings Using Chitosan and Its Derivatives)
Show Figures

Graphical abstract

17 pages, 36055 KB  
Article
Efficient Catalytic Degradation of Selected Toxic Dyes by Green Biosynthesized Silver Nanoparticles Using Aqueous Leaf Extract of Cestrum nocturnum L.
by Pradeep Kumar, Jyoti Dixit, Amit Kumar Singh, Vishnu D. Rajput, Pooja Verma, Kavindra Nath Tiwari, Sunil Kumar Mishra, Tatiana Minkina and Saglara Mandzhieva
Nanomaterials 2022, 12(21), 3851; https://doi.org/10.3390/nano12213851 - 31 Oct 2022
Cited by 33 | Viewed by 4446
Abstract
In the present study, the catalytic degradation of selected toxic dyes (methylene blue, 4-nitrophenol, 4-nitroaniline, and congo red) using biosynthesized green silver nanoparticles (AgNPs) of Cestrum nocturnum L. was successfully performed. These AgNPs are efficiently synthesized when a reaction mixture containing 5 mL [...] Read more.
In the present study, the catalytic degradation of selected toxic dyes (methylene blue, 4-nitrophenol, 4-nitroaniline, and congo red) using biosynthesized green silver nanoparticles (AgNPs) of Cestrum nocturnum L. was successfully performed. These AgNPs are efficiently synthesized when a reaction mixture containing 5 mL of aqueous extract (3%) and 100 mL of silver nitrate (1 mM) is exposed under sunlight for 5 min. The synthesis of AgNPs was confirmed based on the change in the color of the reaction mixture from pale yellow to dark brown, with maximum absorbance at 455 nm. Obtained NPs were characterized by different techniques, i.e., FTIR, XRD, HR-TEM, HR-SEM, SAED, XRD, EDX, AFM, and DLS. Green synthesized AgNPs were nearly mono-dispersed, smooth, spherical, and crystalline in nature. The average size of the maximum number of AgNPs was 77.28 ± 2.801 nm. The reduction of dyes using a good reducing agent (NaBH4) was tested. A fast catalytic degradation of dyes took place within a short period of time when AgNPs were added in the reaction mixture in the presence of NaBH4. As a final recommendation, Cestrum nocturnum aqueous leaf extract-mediated AgNPs could be effectively implemented for environmental rehabilitation because of their exceptional performance. This can be utilized in the treatment of industrial wastewater through the breakdown of hazardous dyes. Full article
Show Figures

Graphical abstract

14 pages, 3727 KB  
Article
CdS Nanocubes Adorned by Graphitic C3N4 Nanoparticles for Hydrogenating Nitroaromatics: A Route of Visible-Light-Induced Heterogeneous Hollow Structural Photocatalysis
by Zhi-Yu Liang, Feng Chen, Ren-Kun Huang, Wang-Jun Huang, Ying Wang, Ruo-Wen Liang and Gui-Yang Yan
Molecules 2022, 27(17), 5438; https://doi.org/10.3390/molecules27175438 - 25 Aug 2022
Cited by 1 | Viewed by 2387
Abstract
Modulating the transport route of photogenerated carriers on hollow cadmium sulfide without changing its intrinsic structure remains fascinating and challenging. In this work, a series of well-defined heterogeneous hollow structural materials consisting of CdS hollow nanocubes (CdS NCs) and graphitic C3N [...] Read more.
Modulating the transport route of photogenerated carriers on hollow cadmium sulfide without changing its intrinsic structure remains fascinating and challenging. In this work, a series of well-defined heterogeneous hollow structural materials consisting of CdS hollow nanocubes (CdS NCs) and graphitic C3N4 nanoparticles (CN NPs) were strategically designed and fabricated according to an electrostatic interaction approach. It was found that such CN NPs/CdS NCs still retained the hollow structure after CN NP adorning and demonstrated versatile and remarkably boosted photoreduction performance. Specifically, under visible light irradiation (λ ≥ 420 nm), the hydrogenation ratio over 2CN NPs/CdS NCs (the mass ratio of CN NPs to CdS NCs is controlled to be 2%) toward nitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-nitrochlorobenzene can be increased to 100%, 99.9%, 83.2%, 93.6%, and 98.2%, respectively. In addition, based on the results of photoelectrochemical performances, the 2CN NPs/CdS NCs reach a 0.46% applied bias photo-to-current efficiency, indicating that the combination with CN NPs can indeed improve the migration and motion behavior of photogenerated carriers, besides ameliorating the photocorrosion and prolonging the lifetime of CdS NCs. Full article
Show Figures

Figure 1

14 pages, 3315 KB  
Article
Rhenium Nanostructures Loaded into Amino-Functionalized Resin as a Nanocomposite Catalyst for Hydrogenation of 4-Nitrophenol and 4-Nitroaniline
by Piotr Cyganowski, Anna Dzimitrowicz, Piotr Jamroz, Dorota Jermakowicz-Bartkowiak and Pawel Pohl
Polymers 2021, 13(21), 3796; https://doi.org/10.3390/polym13213796 - 2 Nov 2021
Cited by 12 | Viewed by 2751
Abstract
The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1′-carboimidazole, was obtained in the process involving anion exchange of ReO [...] Read more.
The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1′-carboimidazole, was obtained in the process involving anion exchange of ReO4 ions followed by their reduction with NaBH4. The amino functionality present in the resin played a primary role in the stabilization of the resultant ReNSs, consisting of ≈1% (w/w) Re in the polymer mass. The synthesized and capped ReNSs were amorphous and had the average size of 3.45 ± 1.85 nm. Then, the obtained catalyst was used in a catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). Following the pseudo-first-order kinetics, 5 mg of the catalyst led to a 90% conversion of 4-NP with the mass-normalized rate constant (km1) of 6.94 × 10−3 min−1 mg−1, while the corresponding value acquired for 4-NA was 7.2 × 10−3 min−1 mg−1, despite the trace amount of Re in the heterogenous catalyst. The obtained material was also conveniently reused. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Environmental Protection)
Show Figures

Graphical abstract

15 pages, 4048 KB  
Article
Ionic Liquid-Modulated Synthesis of Porous Worm-Like Gold with Strong SERS Response and Superior Catalytic Activities
by Kaisheng Yao, Nan Wang, Zhiyong Li, Weiwei Lu and Jianji Wang
Nanomaterials 2019, 9(12), 1772; https://doi.org/10.3390/nano9121772 - 12 Dec 2019
Cited by 5 | Viewed by 3519
Abstract
Porous gold with well-defined shape and size have aroused extensive research enthusiasm due to their prominent properties in various applications. However, it is still a great challenge to explore a simple, green, and low-cost route to fabricate porous gold with a “clean” surface. [...] Read more.
Porous gold with well-defined shape and size have aroused extensive research enthusiasm due to their prominent properties in various applications. However, it is still a great challenge to explore a simple, green, and low-cost route to fabricate porous gold with a “clean” surface. In this work, porous worm-like Au has been easily synthesized in a one-step procedure from aqueous solution at room temperature under the action of ionic liquid tetrapropylammonium glycine ([N3333][Gly]). It is shown that the as-prepared porous worm-like Au has the length from 0.3 to 0.6 μm and the width of approximately 100–150 nm, and it is composed of lots of small nanoparticles about 6–12 nm in diameter. With rhodamine 6G (R6G) as a probe molecule, porous worm-like Au displays remarkable surface enhanced Raman scattering (SERS) sensitivity (detection limit is lower than 10−13 M), and extremely high reproducibility (average relative standard deviations is less than 2%). At the same time, owing to significantly high specific surface area, various pore sizes and plenty of crystal defects, porous worm-like Au also exhibits excellent catalytic performance in the reduction of nitroaromatics, such as p-nitrophenol and p-nitroaniline, which can be completely converted within only 100 s and 150 s, respectively. It is expected that the as-prepared porous worm-like Au with porous and self-supported structures will also present the encouraging advances in electrocatalysis, sensing, and many others. Full article
Show Figures

Graphical abstract

15 pages, 4395 KB  
Article
Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances
by Cuiru Wang, Juanjuan Yin, Shiqi Han, Tifeng Jiao, Zhenhua Bai, Jingxin Zhou, Lexin Zhang and Qiuming Peng
Catalysts 2019, 9(6), 559; https://doi.org/10.3390/catal9060559 - 22 Jun 2019
Cited by 94 | Viewed by 7172
Abstract
Nano-sized palladium nanoparticles showed high catalytic activity with severe limitations in catalytic field due to the tendency to aggregate. A solid substrate with large specific surface area is an ideal carrier for palladium nanoparticles. In present work, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were [...] Read more.
Nano-sized palladium nanoparticles showed high catalytic activity with severe limitations in catalytic field due to the tendency to aggregate. A solid substrate with large specific surface area is an ideal carrier for palladium nanoparticles. In present work, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were successfully designed and prepared by electrospinning and reduction methods using PEI/PCL elexctrospun fiber as carrier. The added PEI component effectively regulated the microscopic morphology of the PEI/PCL fibers, following a large number of pit structures which increased the specific surface area of the electrospun fibers and provided active sites for loading of the palladium particles. The obtained PEI/PCL@PdNPs catalysts for reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) exhibited extremely efficient, stable, and reusable catalytic performance. It was worth mentioning that the reaction rate constant of catalytic reduction of 4-NP was as high as 0.16597 s−1. Therefore, we have developed a highly efficient catalyst with potential applications in the field of catalysis and water treatment. Full article
(This article belongs to the Special Issue New Trends in the Photocatalytic Removal of Organic Dyes)
Show Figures

Figure 1

11 pages, 3381 KB  
Article
Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines
by Lei Jia, Wensheng Zhang, Jun Xu, Jianliang Cao, Zhouqing Xu and Yan Wang
Nanomaterials 2018, 8(6), 409; https://doi.org/10.3390/nano8060409 - 6 Jun 2018
Cited by 12 | Viewed by 5130
Abstract
Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to [...] Read more.
Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to fabricate a magnetic aminoclay (AC) based an AC@Fe3O4@Pd nanocatalyst by depositing palladium nanoparticles (Pd NPs) on the surface of the magnetic aminoclay nanocomposite. The microstructure and the magnetic properties of as-prepared AC@Fe3O4@Pd were tested using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM) analyses. The resultant AC@Fe3O4@Pd nanocatalyst with the magnetic Fe-based inner shell, catalytically activate the outer noble metal shell, which when combined with ultrafine Pd NPs, synergistically enhanced the catalytic activity and recyclability in organocatalysis. As the aminoclay displayed good water dispersibility, the nanocatalyst indicated satisfactory catalytic performance in the reaction of reducing nitrophenol and nitroanilines to the corresponding aminobenzene derivatives. Meanwhile, the AC@Fe3O4@Pd nanocatalyst exhibited excellent reusability, while still maintaining good activity after several catalytic cycles. Full article
Show Figures

Figure 1

16 pages, 14272 KB  
Article
Hierarchical AuNPs-Loaded Fe3O4/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities
by Rong Guo, Tifeng Jiao, Ruirui Xing, Yan Chen, Wanchun Guo, Jingxin Zhou, Lexin Zhang and Qiuming Peng
Nanomaterials 2017, 7(10), 317; https://doi.org/10.3390/nano7100317 - 12 Oct 2017
Cited by 40 | Viewed by 6851
Abstract
Gold nanoparticles (AuNPs) have attracted widespread attention for their excellent catalytic activity, as well as their unusual physical and chemical properties. The main challenges come from the agglomeration and time-consuming separation of gold nanoparticles, which have greatly baffled the development and application in [...] Read more.
Gold nanoparticles (AuNPs) have attracted widespread attention for their excellent catalytic activity, as well as their unusual physical and chemical properties. The main challenges come from the agglomeration and time-consuming separation of gold nanoparticles, which have greatly baffled the development and application in liquid phase selective reduction. To solve these problems, we propose the preparation of polyvinyl alcohol(PVA)/poly(acrylic acid)(PAA)/Fe3O4 nanocomposites with loaded AuNPs. The obtained PVA/PAA/Fe3O4 composite membrane by electrospinning demonstrated high structural stability, a large specific surface area, and more active sites, which is conducive to promoting good dispersion of AuNPs on membrane surfaces. The subsequently prepared PVA/PAA/Fe3O4@AuNPs nanocomposites exhibited satisfactory nanostructures, robust thermal stability, and a favorable magnetic response for recycling. In addition, the PVA/PAA/Fe3O4@AuNPs nanocomposites showed a remarkable catalytic capacity in the catalytic reduction of p-nitrophenol and 2-nitroaniline solutions. In addition, the regeneration studies toward p-nitrophenol for different consecutive cycles demonstrate that the as-prepared PVA/PAA/Fe3O4@AuNPs nanocomposites have outstanding stability and recycling in catalytic reduction. Full article
(This article belongs to the Special Issue Polymer Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop