Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = nitroalkenyl benzenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1021 KiB  
Article
The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor
by Gina Nicoletti and Kylie White
Antibiotics 2022, 11(9), 1188; https://doi.org/10.3390/antibiotics11091188 - 2 Sep 2022
Cited by 1 | Viewed by 2112
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol [...] Read more.
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

19 pages, 1341 KiB  
Article
Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets
by Kylie White, Gina Nicoletti and Hugh Cornell
Antibiotics 2021, 10(11), 1310; https://doi.org/10.3390/antibiotics10111310 - 27 Oct 2021
Cited by 3 | Viewed by 2599
Abstract
The activity profile of a protein tyrosine phosphatase (PTP) inhibitor and redox thiol oxidant, nitropropenyl benzodioxole (NPBD), was investigated across a broad range of bacterial species. In vitro assays assessed inhibitory and lethal activity patterns, the induction of drug variants on long term [...] Read more.
The activity profile of a protein tyrosine phosphatase (PTP) inhibitor and redox thiol oxidant, nitropropenyl benzodioxole (NPBD), was investigated across a broad range of bacterial species. In vitro assays assessed inhibitory and lethal activity patterns, the induction of drug variants on long term exposure, the inhibitory interactions of NPBD with antibiotics, and the effect of plasma proteins and redox thiols on activity. A literature review indicates the complexity of PTP and redox signaling and suggests likely metabolic targets. NPBD was broadly bactericidal to pathogens of the skin, respiratory, urogenital and intestinal tracts. It was effective against antibiotic resistant strains and slowly replicating and dormant cells. NPBD did not induce resistant or drug-tolerant phenotypes and showed low cross reactivity with antibiotics in synergy assays. Binding to plasma proteins indicated lowered in-vitro bioavailability and reduction of bactericidal activity in the presence of thiols confirmed the contribution of thiol oxidation and oxidative stress to lethality. This report presents a broad evaluation of the antibacterial effect of PTP inhibition and redox thiol oxidation, illustrates the functional diversity of bacterial PTPs and redox thiols, and supports their consideration as novel targets for antimicrobial drug development. NPBD is a dual mechanism agent with an activity profile which supports consideration of tyrosine phosphatases and bacterial antioxidant systems as promising targets for drug development. Full article
Show Figures

Figure 1

Back to TopTop