Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) knockout mice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3994 KB  
Article
NOX2ko Mice Show Largely Increased Expression of a Mutated NOX2 mRNA Encoding an Inactive NOX2 Protein
by Monika Göllner, Irmgard Ihrig-Biedert, Victoria Petermann, Sabrina Saurin, Matthias Oelze, Swenja Kröller-Schön, Ksenija Vujacic-Mirski, Marin Kuntic, Andrea Pautz, Andreas Daiber and Hartmut Kleinert
Antioxidants 2020, 9(11), 1043; https://doi.org/10.3390/antiox9111043 - 26 Oct 2020
Cited by 5 | Viewed by 4324
Abstract
Background: The superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2 or gp91phox, the phagocytic isoform) was reported as a major source of oxidative stress in various human diseases. Genetic deletion is widely used to study the impact of NOX2-derived reactive oxygen species [...] Read more.
Background: The superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2 or gp91phox, the phagocytic isoform) was reported as a major source of oxidative stress in various human diseases. Genetic deletion is widely used to study the impact of NOX2-derived reactive oxygen species (ROS) on disease development and progression in various animal models. Here, we investigate why NOX2 knockout mice show no NOX2 activity but express NOX2 mRNA and protein. Methods and Results: Oxidative burst (NOX2-dependent formation of ROS) was measured by L-012-based chemiluminescence and was largely absent in whole blood of NOX2 knockout mice. Protein expression was still detectable in different tissues of the NOX2 knockout mice, at the expected and a slightly lower molecular weight (determined by Western blot). The NOX2 gene was even largely enhanced at its expressional level in NOX2 knockout mice. RNA sequencing revealed a modified NOX2 mRNA in the knockout mice that is obviously translated to a truncated inactive mutant enzyme. Conclusion: Although the commercial NOX2 knockout mice display no considerable enzymatic NOX2 activity, expression of the NOX2 gene (when using standard primers) and protein (when using antibodies binding to the carboxy-terminal end) can still be detected, which may lead to confusion among investigators. Full article
Show Figures

Graphical abstract

17 pages, 1230 KB  
Article
NADPH Oxidase 2 Mediates Myocardial Oxygen Wasting in Obesity
by Anne D. Hafstad, Synne S. Hansen, Jim Lund, Celio X. C. Santos, Neoma T. Boardman, Ajay M. Shah and Ellen Aasum
Antioxidants 2020, 9(2), 171; https://doi.org/10.3390/antiox9020171 - 19 Feb 2020
Cited by 17 | Viewed by 4134
Abstract
Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, [...] Read more.
Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS. Full article
Show Figures

Figure 1

17 pages, 819 KB  
Review
NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke
by Hiroshi Yao, Tetsuro Ago, Takanari Kitazono and Toru Nabika
Int. J. Mol. Sci. 2017, 18(10), 2123; https://doi.org/10.3390/ijms18102123 - 11 Oct 2017
Cited by 28 | Viewed by 7051
Abstract
Several experimental studies have indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) exert detrimental effects on ischemic brain tissue; Nox-knockout mice generally exhibit resistance to damage due to experimental stroke following middle cerebral artery occlusion (MCAO). Furthermore, our previous MCAO study [...] Read more.
Several experimental studies have indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) exert detrimental effects on ischemic brain tissue; Nox-knockout mice generally exhibit resistance to damage due to experimental stroke following middle cerebral artery occlusion (MCAO). Furthermore, our previous MCAO study indicated that infarct size and blood-brain barrier breakdown are enhanced in mice with pericyte-specific overexpression of Nox4, relative to levels observed in controls. However, it remains unclear whether Nox affects the stroke outcome directly by increasing oxidative stress at the site of ischemia, or indirectly by modifying physiological variables such as blood pressure or cerebral blood flow (CBF). Because of technical problems in the measurement of physiological variables and CBF, it is often difficult to address this issue in mouse models due to their small body size; in our previous study, we examined the effects of Nox activity on focal ischemic injury in a novel congenic rat strain: stroke-prone spontaneously hypertensive rats with loss-of-function in Nox. In this review, we summarize the current literature regarding the role of Nox in focal ischemic injury and discuss critical issues that should be considered when investigating Nox-related pathophysiology in animal models of stroke. Full article
(This article belongs to the Special Issue Oxidative Stress in Vascular Diseases)
Show Figures

Figure 1

Back to TopTop