Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nearly Sasakian space forms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 177 KiB  
Editorial
Differentiable Manifolds and Geometric Structures
by Adara M. Blaga
Mathematics 2025, 13(7), 1082; https://doi.org/10.3390/math13071082 - 26 Mar 2025
Viewed by 428
Abstract
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the [...] Read more.
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the latest achievements in different areas of differential geometry, among which is counted: the geometry of differentiable manifolds with curvature restrictions such as Golden space forms, Sasakian space forms; diffeological and affine connection spaces; Weingarten and Delaunay surfaces; Chen-type inequalities for submanifolds; statistical submersions; manifolds endowed with different geometric structures (Sasakian, weak nearly Sasakian, weak nearly cosymplectic, LP-Kenmotsu, paraquaternionic); solitons (almost Ricci solitons, almost Ricci–Bourguignon solitons, gradient r-almost Newton–Ricci–Yamabe solitons, statistical solitons, solitons with semi-symmetric connections); vector fields (projective, conformal, Killing, 2-Killing) [...] Full article
(This article belongs to the Special Issue Differentiable Manifolds and Geometric Structures)
26 pages, 341 KiB  
Article
On the Geometry of the Riemannian Curvature Tensor of Nearly Trans-Sasakian Manifolds
by Aligadzhi R. Rustanov
Axioms 2023, 12(9), 837; https://doi.org/10.3390/axioms12090837 - 29 Aug 2023
Viewed by 1273
Abstract
This paper presents the results of fundamental research into the geometry of the Riemannian curvature tensor of nearly trans-Sasakian manifolds. The components of the Riemannian curvature tensor on the space of the associated G-structure are counted, and the components of the Ricci tensor [...] Read more.
This paper presents the results of fundamental research into the geometry of the Riemannian curvature tensor of nearly trans-Sasakian manifolds. The components of the Riemannian curvature tensor on the space of the associated G-structure are counted, and the components of the Ricci tensor are calculated. Some identities are obtained that are satisfied by the Riemannian curvature tensors and the Ricci tensor. A number of properties are proved that characterize nearly trans-Sasakian manifolds with a closed contact form. The structure of nearly trans-Sasakian manifolds with a closed contact form is obtained. Several classes are singled out in terms of second-order differential-geometric invariants, and their local structure is obtained. The k-nullity distribution of a nearly trans-Sasakian manifold is studied. Full article
20 pages, 330 KiB  
Article
A Note on Nearly Sasakian Manifolds
by Fortuné Massamba and Arthur Nzunogera
Mathematics 2023, 11(12), 2634; https://doi.org/10.3390/math11122634 - 9 Jun 2023
Cited by 3 | Viewed by 1587
Abstract
A class of nearly Sasakian manifolds is considered in this paper. We discuss the geometric effects of some symmetries on such manifolds and show, under a certain condition, that the class of Ricci semi-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. [...] Read more.
A class of nearly Sasakian manifolds is considered in this paper. We discuss the geometric effects of some symmetries on such manifolds and show, under a certain condition, that the class of Ricci semi-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. We prove that a Codazzi-type Ricci nearly Sasakian space form is either a Sasakian manifold with a constant ϕ-holomorphic sectional curvature H=1 or a 5-dimensional proper nearly Sasakian manifold with a constant ϕ-holomorphic sectional curvature H>1. We also prove that the spectrum of the operator H2 generated by the nearly Sasakian space form is a set of a simple eigenvalue of 0 and an eigenvalue of multiplicity 4, and we induce that the underlying space form carries a Sasaki–Einstein structure. We show that there exist integrable distributions with totally geodesic leaves on the same manifolds, and we prove that there are no proper nearly Sasakian space forms with constant sectional curvature. Full article
(This article belongs to the Special Issue Differential Geometry: Structures on Manifolds and Submanifolds)
Back to TopTop