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Abstract: This paper presents the results of fundamental research into the geometry of the Riemannian
curvature tensor of nearly trans-Sasakian manifolds. The components of the Riemannian curvature
tensor on the space of the associated G-structure are counted, and the components of the Ricci tensor
are calculated. Some identities are obtained that are satisfied by the Riemannian curvature tensors and
the Ricci tensor. A number of properties are proved that characterize nearly trans-Sasakian manifolds
with a closed contact form. The structure of nearly trans-Sasakian manifolds with a closed contact
form is obtained. Several classes are singled out in terms of second-order differential-geometric
invariants, and their local structure is obtained. The k-nullity distribution of a nearly trans-Sasakian
manifold is studied.

Keywords: nearly trans-Sasakian manifold; Riemannian curvature tensor; k-nullity distribution;
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1. Introduction

It is known [1,2] that if M is an almost contact metric manifold, then an almost Hermi-
tian structure (called a linear extension of the original almost contact metric structure [3])
is canonically induced on the manifold M×R. The question of the connection between
these structures has been repeatedly studied. The classical result in this direction is the
well-known result of Nakayama stating that an almost contact metric structure is normal if
and only if its linear extension is a Hermitian structure [4]. The study of this connection
makes it possible to single out interesting new classes of almost contact metric structures.
Obigney [5] singled out classes of trans-Sasakian and almost trans-Sasakian structures
whose linear extensions belong to the classes W4 and W2 ⊕W4 of almost Hermitian struc-
tures in the Gray–Hervella classification [6], respectively. V.F. Kirichenko and E.V. Rodina
in [3] obtained a number of profound results concerning the geometry of trans-Sasakian
and almost trans-Sasakian manifolds. The class of almost contact metric structures, which is
a linear extension of almost Hermitian structures of the class W1⊕W4 in the Gray–Hervella
classification, is also known as nearly trans-Sasakian structures [7].

There are about 15 articles on this topic, and we present them here.
In [8], the author investigates the harmonicity and D-pluriharmonicity of a

(ϕ, J)-holomorphic mapping [9] of a nearly trans-Sasakian manifold into an almost Hermi-
tian manifold. It is proved that any (ϕ, J)-holomorphic mapping of a nearly trans-Sasakian
manifold into a quasi-Kählerian manifold is harmonic, and into a Kählerian manifold it
is D-pluriharmonic. Further works have been devoted to the study of submanifolds of a
nearly trans-Sasakian manifold. Thus, in [10], some sufficient conditions were obtained
under which a submanifold of codimension two of a nearly trans-Sasakian manifold with a
trivial normal bundle admits a nearly trans-Sasakian structure. Similar results are formu-
lated for some particular types of nearly trans-Sasakian: nearly Sasakian, nearly Kenmotsu,
nearly cosymplectic, trans-Sasakian, Kenmotsu, and cosymplectic.

The paper [11] studies CR-submanifolds of nearly trans-Sasakian manifolds, general-
izing the results of trans-Sasakian manifolds. The work [12] studies the skew product of
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CR-submanifolds of nearly trans-Sasakian manifolds. The authors study the relationship
between the square of the norm of the second fundamental form (external invariant) and
the deformation function (internal invariant) for submanifolds of the skew product. They
obtained an inequality, namely,

‖h‖2 ≥ 2s
[
‖∇ln f ‖2 + α2 − β2

]
, (1)

for contact CR-skew products of nearly trans-Sasakian manifolds. The study of properties
of CR-submanifolds of nearly trans-Sasakian manifolds with a semisymmetric nonmetric
connection is the subject of [13].

In [14–17], semi-invariant submanifolds of a nearly trans-Sasakian manifold are stud-
ied, and the Nijenhuis tensor of a nearly trans-Sasakian manifold is calculated. Conditions
for the integrability of some distributions on a semi-invariant submanifold of a nearly trans-
Sasakian manifold are studied. Completely umbilical, totally contact umbilical, totally
geodesic, and totally contact geodesic submanifolds are also studied. A classification of fully
umbilical semi-invariant submanifolds of an almost trans-Sasakian manifold is obtained.

The next series of papers [18–22] is devoted to the study of a submanifold of a skew
product of nearly trans-Sasakian manifolds. Conditions for the integrability of distributions
on these submanifolds are obtained. Some interesting results regarding such manifolds
have also been obtained. The articles obtained necessary and sufficient conditions for a
totally umbilical proper oblique submanifold and show when it is totally geodesic. They
have studied the geometry of oblique submanifolds of a nearly trans-Sasakian manifold
when the tensor field Q is parallel. It is proved that Q is not parallel on a submanifold if it
is not anti-invariant.

In [23], non-invariant hypersurfaces of a nearly trans-Sasakian manifold endowed
with an ( f , g, u, V, λ)-structure are studied. Some properties of this structure are obtained,
and the second fundamental forms of non-invariant hypersurfaces of nearly trans-Sasakian
manifolds and weakly cosymplectic manifolds with ( f , g, u, V, λ)-structure are calculated
under the condition that f is parallel. In addition, the eigenvalues f are found, and it
is proved that a non-invariant hypersurface with the ( f , g, u, V, λ)-structure of a weakly
cosymplectic manifold with a contact structure becomes completely geodesic. The article
ends with a study of the necessary condition for a completely geodesic or completely
umbilical non-invariant hypersurface with the ( f , g, u, V, λ)-structure of a nearly trans-
Sasakian manifold.

Let us mention one more article [24], in which a systematic study of nearly trans-
Sasakian manifolds was started. In what follows, we will frequently refer to this work.

It follows from the above review of sources that the authors of these publications did
not consider the geometry of the Riemannian curvature tensor.

In this paper, we propose to fill this gap; we present the results of studies of the geom-
etry of the Riemannian curvature tensor of nearly trans-Sasakian manifolds. The article has
the following structure.

Section 2 provides the basic information necessary for further research. The method of
research is given, the object of research is determined. In Section 3, we provide a definition
of a nearly trans-Sasakian manifold and obtain a complete group of structural equations,
as well as some identities characterizing a nearly trans-Sasakian structure. The main results
of this section are Theorems 3 and 5.

In Section 4, we calculate the components of the Riemannian curvature tensor and the
Ricci tensor of a nearly trans-Sasakian manifold on the space of the associated G-structure
and calculate the scalar curvature. Some identities that are satisfied by the Riemannian
curvature tensor and the Ricci tensor are proved.

In Section 5, we study nearly trans-Sasakian manifolds of constant curvature. It is
proved that a nearly trans-Sasakian manifold of constant curvature is either a trans-Sasakian
manifold of constant negative curvature or is locally conformal to a closely cosymplectic
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manifold of constant curvature. In particular, a nearly trans-Sasakian manifold is zero
constant curvature if and only if it is a cosymplectic manifold of constant curvature.

In Section 6, we study the contact analogs of the Gray classes of nearly trans-Sasakian
manifolds, i.e., classes CR1, CR2, and CR3. It is proved that nearly trans-Sasakian manifolds
of the class CR3 coincide with almost contact metric manifolds that are locally conformal
to closely cosymplectic manifolds. Classes CR4 and CR5 are introduced. It is proved that
nearly trans-Sasakian varieties of classes CR4 and CR5 coincide. Additionally, the local
structure of this class of manifolds is obtained.

In Section 7, we introduce the concept of the k-nullity distribution. It is proved that a
nearly trans-Sasakian manifold on which there exists a k-nullity distribution containing the
characteristic vector field ξ is a nearly trans-Sasakian manifold of class CR4.

2. Preliminary Information

Recall that an almost contact metric structure on a manifold M is a collection
(ξ, η, Φ, g = 〈·, ·〉) of tensor fields on M, where ξ is a vector field, called characteristic;
η is a differential 1-form, called a contact form; Φ is an endomorphism of the module X (M)
of smooth vector fields of the manifold M, called a structural endomorphism; and g = 〈·, ·〉
is a Riemannian metric. In this case:

(1) η(ξ) = 1;

(2) Φ(ξ) = 0;

(3) η ◦Φ = 0;

(4) Φ2 = −id + ξ ⊗ η;

(5) 〈ΦX, ΦY〉 = 〈X, Y〉 − η(X)η(Y); X, Y ∈ X (M). (2)

Such structures naturally arise on hypersurfaces of almost Hermitian manifolds [25],
on spaces of principal T1 bundles over symplectic manifolds with integral fundamental
form (Boothby–Wan bundles [26]), and, more generally, over almost Hermitian mani-
folds [27], and are natural generalizations of the so-called contact metric manifolds that
arise on odd-dimensional manifolds with a fixed 1-form of maximum rank (contact struc-
ture).

It is well known that a manifold admitting an almost contact metric structure is odd-
dimensional and orientable. In the C∞(M)-module X (M) of smooth vector fields on such
a manifold, two mutually complementary projectors,

(1) l = id−m = −Φ2;

(2) m = ξ ⊗ η, (3)

are internally defined. These will be projections onto the distributions

(1) L = ImΦ = kerη;

(2)M = kerΦ, (4)

respectively, which we call the first and second fundamental distributions of the almost
contact metric structure. Thus, for a module X (M) of smooth vector fields, we have

X (M) = L⊕M, (5)

where

(1) dimL = 2n

(2) dimM = 1. (6)
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Moreover, if we introduce into consideration

X (M)C = C⊕X (M), (7)

the complexification of the module X (M), then

X (M)C = D
√
−1

Φ ⊕ D−
√
−1

Φ ⊕ D0
Φ, (8)

where D
√
−1

Φ , D−
√
−1

Φ , and D0
Φ are the eigendistributions of the structural endomorphism

Φ corresponding to the eigenvalues
√
−1, −

√
−1, and 0. Moreover, the projections onto

the terms of this direct sum are, respectively, the endomorphisms [28,29]

(1) π = − 1
2

(
Φ2 +

√
(−1)Φ

)
;

(2) π = 1
2 (−Φ2 +

√
−1Φ);

(3) m = η ⊗ ξ. (9)

Defining an almost contact metric structure on the manifold M2n+1 is equivalent to defining
a G-structure G on M with the structure group

G = U(n)× 1. (10)

The elements of the total space of this G-structure are the complex frames of the manifold
M of the form

p =
(

p, ξp, ε1, ..., εn, ε1̂, ..., εn̂
)
. (11)

These frames are characterized by the fact that the matrices of the tensors Φ and g in them
have, respectively, the form

(1) (Φj
i) =

 0 0 0
0
√
−1In 0

0 0 −
√
−1In

;

(2) (gij) =

 1 0 0
0 0 In
0 In 0

, (12)

where In is the identity matrix of order n. We will assume that the indexes i, j, k, ... run from
0 to 2n, and that the indexes a, b, c, d, ... run from 1 to n. Let

â = a + n. (13)

It is well known [28,29] that the first group of structural equations of the G-structure G has
the form:

(1) dθa = −θa
b ∧ θb + Cab

cθc ∧ θb + Cabcθb ∧ θc + Ca
bθb ∧ θ + Cabθb ∧ θ;

(2) dθa = θb
a ∧ θb + Cab

cθc ∧ θb + Cabcθb ∧ θc + Ca
bθb ∧ θ + Cabθb ∧ θ;

(3) dθ = Dabθa ∧ θb + Dabθa ∧ θb + Db
aθa ∧ θb + Daθ ∧ θa + Daθ ∧ θa, (14)

where
{

θi
j

}
are the components of the Riemannian connection ∇ form of metrics g;

{
θi}

are the components of the solder form,

θ = θ0 = π∗η; (15)
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π is a natural projection of the G-structure total space to the manifold M, and

(1) Φa
b,k = 0;

(2) Φâ
b̂,k

= 0;

(3) Φ0
0,k = 0;

(4) Cabc =
√
−1
2 Φa

[b̂,ĉ]
;

(5) Cabc = −
√
−1
2 Φâ

[b,c];

(6) Cab
c = −

√
−1
2 Φa

b̂,c
;

(7) Cab
c =

√
−1
2 Φâ

b,ĉ;

(8) Cab =
√
−1( 1

2 Φa
b̂,0
−Φa

0,b̂
);

(9) Cab = −
√
−1( 1

2 Φâ
b,0 −Φâ

0,b);

(10) Ca
b = −

√
−1Φ0,b;

(11) Ca
b =
√
−1Φâ

0,b̂
;

(12) Dab =
√
−1Φ0

[â,b̂]
;

(13) Dab = −
√
−1Φ0

[a,b];

(14) Db
a = −

√
−1(Φ0

a,b̂
+ Φ0

b̂,a
);

(15) Da = −
√
−1Φ0

â,0;

(16) Da =
√
−1Φ0

a,0. (16)

In this case,

(1) Cabc = −Cacb;

(2) Cabc = −Cacb;

(3) Cab
c = −Cba

c;

(4) Cab
c = Cba

c;

(5) Dab = −Dba;

(6) Dab = −Dba;

(7) Db
a = Ca

b − Cb
a. (17)

We also recall that an almost Hermitian structure on a manifold M is a pair
(J, g = 〈·, ·〉) of tensor fields on M, where J is an almost complex structure,

J2 = −id, (18)

and g is a Riemannian metric. Moreover,

〈JX, JY〉 = 〈X, Y〉; X, Y ∈ X (M). (19)

Defining an almost Hermitian structure on M2n is equivalent to defining a G-structure
on M with structure group U(n). The elements of the total space of this G-structure are
complex frames of the manifold M, characterized by the fact that the matrices of the tensors
J and g in them have, respectively, the form
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(1) (J j
i ) =

( √
−1In 0
0 −

√
−1In

)
,

(2) (gij) =

(
0 In
In 0

)
. (20)

It is well known that the first group of structural equations of this G-structure has the
form [29,30]

(1) dωa = −ωa
b ∧ωb + Bab

cωc ∧ωb + Babcωb ∧ωc;

(2) dωa = ωb
a ∧ωb + Bab

cωc ∧ωb + Babcωb ∧ωc. (21)

Here,
{

ωi
j

}
are the components of the form of the Riemannian connection of the metric

g;
{

ωi} are the components of the solder form; and

(1) Babc = Babc;

(2) Bab
c = Bab

c (22)

are the components the so-called structural and virtual tensors on the space of the associated
G-structure. In this case,

(1) Babc = −Bacb;

(2) Babc = −Bacb;

(3) Bab
c = −Bba

c;

(4) Bab
c = −Bba

c; (23)

(for details, see, for example, [29,30]).
We recall [6] that almost contact metric structures of the class W1 ⊕W4 in the Gray–

Hervella classification (Vaisman–Gray structures) on the manifold M2n are defined by
the identity

∇X(Ψ)(X, Y) = − 1
2(n− 1)

{〈X, X〉δΨ(Y)− 〈X, Y〉δΨ(X)− 〈JX, Y〉δΨ(JX)}, (24)

where
Ψ(X, Y) = 〈X, JY〉 (25)

is the fundamental form of almost Hermitian structures and δ is the codifferentiation
operator. It is verified by direct calculation that this identity is equivalent to the following
relations on the space of the associated G-structure:

(1) B[abc] = Babc;

(2) B[abc] = Babc;

(3) Bab
c = β[aδ

b]
c ;

(4) Bab
c = β[aδc

b]; (26)

where {βi} are functions on the space of the associated G-structure that are components of
the so-called Lee form.

Let us briefly recall the construction of a linear extension of an almost contact metric
manifold M (or, similarly, a linear extension of its almost contact metric structure). Note that
on the manifold M×R, a two-dimensional distribution ∆ is internally defined such that

∆(p,t) = Mp ⊕R. (27)
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Obviously, this distribution is equipped with a canonical almost Hermitian structure (J0, g0),
where J0 is the rotation operator through the angle π

2 in the positive direction. It is also
obvious that, in the pair (J, g̃), where

J(p,t) = Φ|Lp ⊕ J0 (28)

and g̃ is the Cartesian product metric, is an almost Hermitian structure on the manifold
M×R. We note that the distribution δ⊥ is invariant under the endomorphism J. The triple
(M×R, J, g̃) is called a linear extension of the initial almost contact metric manifold [3].
On the manifold (M×R), the vector field ν generated by the unit vector of the real axis R
and its dual closed 1-form ζ, which defines the completely integrable Pfaff equation

ζ = 0, (29)

whose maximal integral manifolds are naturally identified with the manifold M, are defined
internally, as well as vector field ξ and covector field η, respectively, by the characteristic
vector and the contact form of the manifold M. With their help, frames of type

p =
(

p, ξp, ε1, ..., εn, ε1̂, ..., εn̂
)

(30)

of the manifold M are naturally complemented to frames of type

p̃ =
(

p, ξp, ε1, ..., εn, νp, ε1̂, ..., εn̂
)

(31)

of the manifold (M×R). This variety is naturally associated with the G-structure G with
the structural group

G = U(n)×U(1), (32)

the first group of structural equations of which has the form:

(1) dωα = −ωα
β ∧ωβ + Bαβ

γωγ ∧ωβ + Bαβγωβ ∧ωγ;

(2) dωα = ω
β
α ∧ωβ + Bαβ

γωγ ∧ωβ + Bαβγωβ ∧ωγ, (33)

(indexes α, β, γ,... run values from 0 to n). The elements of the total space of this G-structure
are complex frames of the form

r =
(

p, ε0, ε1, ..., εn, ε0̂, ..., εn̂
)
, (34)

where

(1) ε0 = 1√
2

(
ξp −

√
−1νp

)
;

(2) εp̂ = 1√
2

(
ξp +

√
−1νp

)
. (35)

Complementing system (14) with the equation

dθ0 = 0, (36)

where
θ0 = π∗ζ, (37)
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and using the transition matrix from the frame p̃ to the frame r, it is easy to establish a
fundamental connection between the structural objects of the G-structure G and G:

(1) Bab
c = Cab

c;

(2) Bab
0 = 1√

2

(
Dab − C[ab]

)
;

(3) Ba0
b = 1√

2
Ca

b,

(4) Ba0
0 = 1

2 Da;

(5) Babc = Cabc;

(6) Bab0 = 1
2
√

2
Cab,

(7) B0ab = 1√
2

Dab;

(8) B00a = − 1
4 Da, (38)

and complex conjugate formulas.
Let M be a (2n + 1)-dimensional almost contact metric manifold provided with an

almost contact metric structure (Φ, ξ, η, g = 〈·, ·〉). We will denote by

Ω(X, Y) = 〈X, ΦY〉 (39)

the fundamental form of the structure,

Ω(X, Y) = −Ω(Y, X). (40)

We recall [28,30] that an almost contact metric structure is called contact metric or almost
Sasakian if

dη = Ω (41)

and normal if
2N + dη ⊗ ξ = 0, (42)

where
N(X, Y) =

1
4

(
Φ2[X, Y] + [ΦX, ΦY]−Φ[ΦX, Y]−Φ[X, ΦY]

)
(43)

is the Nijenhuis tensor of the structure operator. We note [28,30] that an almost contact
metric structure is normal if and only if, on the space of the associated G-structure,

(1) Cabc = Cabc = 0;

(2) Cab
c = Cab

c = 0;

(3) Cab = Cab = 0;

(4) Dab = Dab = 0;

(5) Da = Da = 0. (44)

A normal contact metric structure is called Sasakian.
We note that an almost contact metric structure is called almost cosymplectic if its

contact and fundamental forms are closed. A normal almost cosymplectic structure is
called cosymplectic. An almost contact metric structure for which

∇X(Φ)Y +∇Y(Φ)X = 0 (45)

is called nearly cosymplectic. A nearly cosymplectic structure with a closed contact form is
called closely cosymplectic. It is known [31] that every closely cosymplectic manifold is
locally equivalent to the product of a nearly Kähler manifold and a real straight line.
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Definition 1. The Lee form of an almost Hermitian structure (J, g̃) on the manifold M2n+2 is
the form

α =
1
n

δΨ ◦ J, (46)

where
Ψ(X, Y) = g̃(X, JY) (47)

is the fundamental form of the structure and δ is the codifferentiation operator. The vector β dual
to the Lee form is called the Lee vector. In this paper, by the Lee form of an almost contact metric
structure, we mean the Lee form of its linear extension.

It is easy to check that, on the space of the associated G-structure G, the components
of the Lee vector (or form) are found by the formula

βα =
2
n

Bαγ
γ (48)

or, considering (38),

(1) βa = 2
n Cah

h +
1
n Da;

(2) βa =
2
n Cah

h + 1
n Da;

(3) β0 = −
√

2
n Ch

h;

(4) β0 = −
√

2
n Ch

h. (49)

3. Definition of a Nearly Trans-Sasakian Structure and Its Structural Equations

Definition 2 ([7]). An almost contact metric structure is called a nearly trans-Sasakian (NTS)-
structure if its linear extension belongs to the class W1 ⊕W4 of almost Hermitian structures in the
Gray–Hervella classification. An almost contact metric manifold endowed with an NTS-structure is
called an NTS-manifold.

The following theorem is valid.

Theorem 1. An almost contact metric structure is an NTS-structure if and only if, on the space of
the associated G-structure,

(1) Cab
c = Cab = Dab = Da = 0;

(2) Ca
b = − 1√

2
β0δb

a ;

(3) Cab
c = Cab = Dab = Da = 0;

(4) Ca
b = − 1√

2
β0δb

a ;

(5) Da
b = 1√

2

(
β0 − β0)δa

b ;

(6) C[abc] = Cabc;

(7) C[abc] = Cabc. (50)

Proof. Let M be an NTS-manifold. By definition, this means that the linear extension of its
almost contact metric structure belongs to the Gray–Hervella class W1 ⊕W4. As already
noted, this is equivalent to the relations:

(1) Bαβ
γ = β[αδ

β]
γ ;

(2) Bαβ
γ = β[αδ

γ
β]

;

(3) B[αβγ] = Bαβγ;

(4) B[αβγ] = Bαβγ. (51)
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Describing (21) and taking into account these relations, we obtain:

(1) Bab
c = β[aδ

b]
c , (52)

i.e.,
Cab

c = β[aδ
b]
c ; (53)

(2) Bab
0 = β[aδ

b]
0 = 0, (54)

i.e.,
C[ab] = Dab; (55)

(3) Ba0
b = β[aδ

0]
b , (56)

i.e.,

Ca
b = − 1√

2
β0δa

b ; (57)

(4) Ba0
0 = β[aδ

0]
0 =

1
2

βa, (58)

i.e.,
βa = Da; (59)

(5) B[abc] = Babc, (60)

i.e.,
C[abc] = Cabc; (61)

(6) Bab0 = −Bba0, (62)

i.e.,
Cab = −Cba, (63)

which means
Dab = Cab; (64)

(7) Bab0 = B0ab, (65)

i.e.,
Cab = 2Dab, (66)

which means
Cab = Dab = 0; (67)

(8) B00a = 0, (68)

i.e.,
Da = 0, (69)

and hence
βa = 0, (70)

Cab
c = 0. (71)
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Finally, {
Da

b = Cb
a − Ca

b
Da

b = 1√
2

(
β0 − β0

)
δa

b . (72)

The remaining relations are verified in a similar way.

Corollary 1. The first group of structural equations of the NTS-structure on the space of the
associated G-structure has the form

(1) dθa = −θa
b ∧ θb + Cabcθb ∧ θc +

β0
√

2
θ ∧ θa;

(2) dθa = θb
a ∧ θb + Cabcθb ∧ θc + β0√

2
θ ∧ θa;

(3) dθ = 1√
2

(
β0 − β0

)
δb

a θa ∧ θb, (73)

where

(1) C[abc] = Cabc;

(2) C[abc] = Cabc. (74)

Corollary 2. The components of the vector (or form) Lee have the form

(1) βa = βa = 0;

(2) β0 = −
√

2
n Ch

h;

(3) β0 = −
√

2
n Ch

h. (75)

Corollary 3. For the components of the covariant differential of the structural endomorphism of an
NTS-structure on the space of the associated G-structure, we have

(1) Φa
0,b = 1√

2

√
−1β0δa

b ;

(2) Φâ
0,b̂

= − 1√
2

√
−1β0δb

a ;

(3) Φ0
â,b = − 1√

2

√
−1β0δa

b ;

(4) Φ0
a,b̂

= 1√
2

√
−1β0δb

a ;

(5) Φĉ
a,b = −Φĉ

b,a;

(6) Φc
â,b̂

= −Φc
b̂,â

, (76)

and the remaining components are zero.

Corollary 4. An NTS-structure is a trans-Sasakian structure if and only if

Cabc = Cabc = 0 (77)

on the space of the associated G-structure. At the same time, it is Sasakian if and only if

β0 = −β0 =
√
−2; (78)

it is cosymplectic if and only if
β0 = β0 = 0; (79)

and it is Kenmotsu if and only if
β0 = β0 =

√
2. (80)
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Corollary 5. An NTS-structure is a closely cosymplectic structure if and only if

β0 = β0 = 0 (81)

on the space of the associated G-structure.

Corollary 6. An NTS-structure is a special generalized Kenmotsu structure of the second kind if
and only if

β0 = β0 =
√

2 (82)

on the space of the associated G-structure.

Corollaries 4–6 to Theorem 1 give numerous examples of NTS-manifolds.
The standard procedure for the differential continuation of relations (73) allows us to

obtain the second group of structural equations of the NTS-structure,

dθa
b + θa

c ∧ θc
b =

(
Aad

bc − 2CadhChbc +
1
2

β0
(

β0 − β0

)
δa
[bδd

c]

)
θc ∧ θd, (83)

where
{

Aad
bc

}
is a family of functions on the space of the associated G-structure that serve

as components of the so-called curvature tensor of the associated Q-algebra [28] or the
structural tensor of the second kind, and

(1) Aad
[bc] = 0;

(2) A[bd]
ac = − 1

2

{(
β0)2 − (β0)

2
}

δ
[b
a δ

d]
c ;

(3) Aad
bc = Abc

ad +
1
2

{(
β0)2 − (β0)

2
}

δ
[b
a δ

c]
d . (84)

Moreover,

(1) dCabc + Cdbcθa
d + Cadcθb

d + Cabdθc
d = Cabcdθd +

1√
2

β0Cabcθ;

(2) dCabc − Cdbcθd
a − Cadcθd

b − Cabdθd
c = Cabcdθd + 1√

2
β0Cabcθ;

(3) dβ0 = β00θ; (4) dβ0 = β00θ, (85)

where Cabcd, Cabcd, Cabc
d, Cabc

d, β00, and β00 are appropriate functions on the space of the
associated G-structure, and

(1)
(

β0 − β0
)
Cabc = 0;

(2)
(

β0 − β0
)
Cabc = 0;

(3)
(

β00 − β00
)
= 1√

2

{(
β0)2 − (β0)

2
}

;

(4) Ca[bcd] = 0;

(5) Ca[bcd] = 0. (86)

Externally differentiating Equation (83), we obtain:

dAad
bc + Ahd

bc θa
h + Aah

bc θd
h − Aad

hcθh
b − Aad

bhθh
c = Aad

bchθh + Aadh
bc θh + Aad

bc0θ, (87)

where

(1) Aad
b[ch] = Aa[dh]

bc = 0;

(2)
(

Aa[d
bc − 2Ca[d|hChbc

)
Cc| f g] = 0;

(3)
(

Aad
b[c − 2Cad f C f b[c

)
C|d|hg] = 0. (88)



Axioms 2023, 12, 837 13 of 26

Differentiating (85:1) externally, we obtain:

dCabcd + Chbcdθa
h + Cabcdθd

h + Cabdθc
d + Cabchθd

h =

= Cabcdhθh +
1√
2

(
β0 − β0

)
Cabcdθ, (89)

where

(1) Cabc[dh] = 0;

(2) CabcgCgdh = 0. (90)

Theorem 2. An NTS-manifold is either a trans-Sasakian manifold or has a closed contact form.

Proof. 1. It follows from equality (86:1) that

β0 = β0 (91)

or
Cabc = 0. (92)

In the first case, the NTS-manifold has a closed contact form. In the second case, the NTS-
manifold, according to Corollary 4 to Theorem 1, is a trans-Sasakian manifold.

2. Consider the identity (84:1), i.e., identity

A[bd]
ac = −1

2

{(
β0
)2
− (β0)

2
}

δ
[b
a δ

d]
c . (93)

Let us collapse this equality first by indexes a and b and then by indexes c and d; then, by
virtue of (84:1), we obtain (

β0
)2
− (β0)

2 = 0, (94)

i.e., (
β0 − β0

)(
β0 + β0

)
= 0. (95)

Consider two cases:

(1) β0 − β0 = 0;

(2) β0 + β0 = 0. (96)

In the first case, the NTS-manifold has a closed contact form. In the second case, it follows
from (86:1) that

Cabc = 0, (97)

which, according to Corollary 4, means that the NTS-manifold is trans-Sasakian.

Remark 1. Consider the identity

Aad
bc = A[ad]

[bc] + A(ad)
[bc] + A[ad]

(bc) + A(ad)
(bc) . (98)

Considering the identities (84:1) and (84:2), this equality can be written as:

Aad
bc = A(ad)

(bc) −
1
2

{(
β0
)2
− (β0)

2
}

δ
[b
a δ

d]
c . (99)

i.e.,

Ãad
bc = A(ad)

(bc) = Aad
bc +

1
2

{(
β0
)2
− (β0)

2
}

δ
[b
a δ

d]
c , (100)
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where obviously
Ãad
[bc] = Ã[ad]

bc = 0. (101)

Let the contact form η of an NTS-manifold be the Killing form, i.e.,

∇X(η)Y +∇Y(η)X = 0, (102)

which on the frame bundle space can be written as

ηi,j + ηj,i = 0. (103)

The components of the contact form η on the frame bundle space over M satisfy
the equation

dηi − ηjθ
j
i = ηi,jθ

j, (104)

which on the space of the associated G-structure is equivalent to the following:

(1) η0,i = 0;

(2) ηa,i =
√
−1Φ0

a,i;

(3) ηâ,i = −
√
−1Φ0

â,i. (105)

According to Corollary 3 to Theorem 1, we obtain

(1) ηa,b̂ =
1√
2

β0δb
a ;

(2) ηâ,b =
1√
2

β0δa
b , (106)

and the rest of the components are zero. From (103) and (106), it follows that, for an
NTS-manifold whose contact form is the Killing form, we have that

β0 = β0. (107)

Thus, an NTS manifold with a Killing contact form is a manifold with a contact form. It is
easy to see that the inverse is also true, i.e., the closed form of an NTS-manifold is a Killing
form. Thus proved.

Theorem 3. For an NTS-manifold, the following conditions are equivalent:
(1) The contact form is closed;
(2) The contact form is a Killing form.

Definition 3 ([24]). An NTS-structure with a closed contact form is called a proper NTS-structure.

The following theorem is valid.

Theorem 4 ([24]). An almost contact metric structure with a closed contact form on a manifold M
is a proper NTS-structure if and only if the identity

∇X(Φ)Y +∇Y(Φ)X = χ{η(X)ΦY + η(Y)ΦX}, X, Y ∈ X (M). (108)

Theorem 5. The class of NTS-manifolds with a closed contact form coincides with the class of
almost contact metric manifolds with a closed contact form that are locally conformal to closely
cosymplectic manifolds.
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Proof. Let σ ∈ C∞(M). Let us perform a conformal transformation with the defining
function σ of the proper NTS-structure:

g̃ = e−2σg; η̃ = e−ση; ξ̃ = eσξ. (109)

Let ∇̃ be the Riemannian connection of the transformed structure. Then, as is well known
(see, for example, [6]), the affine deformation tensor T from the connection ∇ to the
connection ∇̃ has the form

T(X, Y) = 〈X, Y〉ζ − dσ(X)Y− dσ(Y)X, X, Y ∈ X (M), (110)

where
ζ = gradσ. (111)

Therefore,
∇̃XY = ∇XY + 〈X, Y〉ζ − dσ(X)Y− dσ(Y)X, (112)

and hence,

∇̃X(Φ)Y = ∇X(Φ)Y−Φ(∇̃XY) = ∇X(ΦY) + 〈X, ΦY〉ζ −
−dσ(X)ΦY− dσ(ΦY)X−Φ(∇XY)− 〈X, Y〉Φζ + dσ(X)ΦY + dσ(Y)ΦX =

= ∇X(Φ)Y + 〈X, ΦY〉ζ − dσ(ΦY)X− 〈X, Y〉Φζ + dσ(Y)ΦX, (113)

i.e.,

∇̃X(Φ)Y = ∇X(Φ)Y + 〈X, ΦY〉ζ − dσ(ΦY)X− 〈X, Y〉Φζ + dσ(Y)ΦX. (114)

In particular, considering (108),

∇̃X(Φ)X = ∇X(Φ)X− dσ(ΦX)X− ‖X‖2Φζ + dσ(X)ΦX =

= χη(X)ΦX− dσ(ΦX)X + dσ(X)ΦX− ‖X‖2Φζ. (115)

In particular, if the function σ can be chosen so that

dσ = −χη; (116)

then, obviously,
ζ = −χξ, (117)

and, considering the axioms of the almost contact metric structure,

∇̃X(Φ)X = 0. (118)

Moreover, in this case, due to the closedness of the contact form η,

dη̃ = d
(
e−ση

)
= −e−σdσ ∧ η = e−σχη ∧ η = 0, (119)

i.e., the transformed structure is closely cosymplectic, and the manifold M is conformally
the closely cosymplectic manifold.

Conversely, let M be an almost contact metric manifold with a closed contact form
η local conformal to a closely cosymplectic manifold, and let σ be the determining func-
tion of the corresponding conformal transformation of its almost contact metric structure
(ξ, η, Φ, g)→

(
ξ̃, η̃, Φ, g̃

)
. Then,

η̃ = e−ση. (120)

Differentiating (120) externally, we obtain

0 = dη̃ = −e−σdσ ∧ η (121)
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and, hence,
dσ ∧ η = 0. (122)

Therefore, ∃χ ∈ C∞(M), and
dσ = −χη. (123)

Accordingly, for the vector ζ dual to the form dσ, we have

〈〈ζ, X〉〉 = dσ(X) = −χη(X) = −χ〈ξ, X〉, (124)

and, due to the non-degeneracy of the metric, ζ = −χξ. Therefore, in view of (115),

0 = ∇̃X(Φ)X =

= ∇X(Φ)X− dσ(ΦX)X− ‖X‖2Φζ + dσ(X)ΦX = ∇X(Φ)X− χη(X)ΦX. (125)

Polarizing this identity, we obtain identity (108). By virtue of Theorem 4, the original
structure is its own NTS-structure.

Taking into account the Main Theorem [3], Theorems 2 and 5 can be combined into
the following theorem, which provides a complete classification of NTS-manifolds.

Theorem 6. The class of NTS-manifolds with non-closed contact form coincides with the class of
almost contact metric manifolds homothetic to Sasaki varieties. The class of NTS-manifolds with a
closed contact form coincides with the class of almost contact metric manifolds with a closed contact
form that are locally conformal to closely cosymplectic manifolds.

4. Riemannian Curvature Tensor of a Nearly Trans-Sasakian Manifold

In this section, we calculate the components of the Riemann–Christoffel tensor,
the Ricci tensor, and the scalar curvature of an NTS-manifold on the space of the
associated G-structure.

We recall that the tensor components of the form of the Riemannian connection on the
space of the associated G-structure have the form [8,9]:

(1) θa
b̂
=
√
−1
2 Φa

b̂,i
θi;

(2) θ â
b = −

√
−1
2 Φâ

b,iθ
i;

(3) θa
0 =
√
−1Φa

0,iθ
i;

(4) θ â
0 = −

√
−1Φâ

0,iθ
i;

(5) θ0
a = −

√
−1Φ0

a,iθ
i;

(6) θ0
â =
√
−1Φ0

â,iθ
i;

(7) θ0
0 = 0;

(8) θi
j + θ

ĵ
î
= 0. (126)
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Considering (14) and Corollary 3 to Theorem 1, relations (126) on the space of the associated
G-structure are rewritten in the form:

(1) θa
b̂
= Cabcθc;

(2) θ â
b = Cabcθc;

(3) θa
0 = 1√

2
β0δa

bθb;

(4) θ â
0 = 1√

2
β0δb

a θb;

(5) θ0
a = − 1√

2
β0δb

a θb;

(6) θ0
â = − 1√

2
β0δa

bθb;

(7) θ0
0 = 0; 8) θi

j + θ
ĵ
î
= 0. (127)

Differentiating externally (127), we obtain:

(1) dθa
b̂
= −Cdbcθa

d ∧ θc − Cadcθb
d ∧ θc + CabhChcdθc ∧ θd − Cab[cd]θc ∧ θd;

(2) dθ â
b = Cdbcθd

a ∧ θc + Cadcθd
b ∧ θc − Cab[cd]θ

c ∧ θd + CabhChcdθc ∧ θd;

(3) dθa
0 = − 1√

2
β0θa

b ∧ θb + 1√
2

β0Cabcθb ∧ θc +
1√
2

{
β00 − 1√

2
(β0)2

}
θ ∧ θa;

(4) dθ â
0 = 1√

2
β0θb

a ∧ θb +
1√
2

β0Cabcθb ∧ θc + 1√
2

{
β00 − 1√

2
(β0)

2
}

θ ∧ θa;

(5) dθ0
a = − 1√

2
β0θb

a ∧ θb − 1√
2

β0Cabcθb ∧ θc − 1√
2

{
β00 − 1√

2
(β0)

2
}

θ ∧ θa;

(6) dθ0
â = 1√

2
β0θa

b ∧ θb − 1√
2

β0Cabcθb ∧ θc − 1√
2

{
β00 − 1√

2
(β0)2

}
θ ∧ θa. (128)

Recall that the second group of structural equations of the Riemannian connection has the
form [28,29]

dθi
j = −θi

k ∧ θk
j +

1
2

Ri
jklθ

k ∧ θl , (129)

where
{

Ri
jkl

}
⊂ C∞(BM) are the components of the Riemann–Christoffel tensor.

Describing (129) on the space of the associated G-structure, we obtain:

(1) dθa
b̂
= −Cdbcθa

d ∧ θc − Cadcθb
d ∧ θc +

1
2

(
Ra

b̂cd
+ (β0)2δa

[cδb
d]

)
θc ∧ θd +

+Ra
b̂cd̂

θc ∧ θd +
1
2 Ra

b̂ĉd̂
θc ∧ θd + Ra

b̂0c
θ ∧ θc + Ra

b̂0ĉ
θ ∧ θc;

(2) dθ â
b = Cdbcθd

a ∧ θc + Cadcθd
b ∧ θc + 1

2 Râ
bcdθc ∧ θd + Râ

bcd̂
θc ∧ θd +

+ 1
2

{
Râ

bĉd̂
+ (β0)

2δ
[c
a δ

d]
b

}
θc ∧ θd + Râ

b0cθ ∧ θc + Râ
b0ĉθ ∧ θc;

(3) dθa
0 = − 1√

2
β0θa

b ∧ θb + 1
2 Ra

0bcθb ∧ θc + Ra
0bĉθb ∧ θc +

+
(

1
2 Ra

0b̂ĉ
+ 1√

2
β0Cabc

)
θb ∧ θc + Ra

00bθ ∧ θb + Ra
00b̂

θ ∧ θb;

(4) dθ â
0 = 1√

2
β0θb

a ∧ θb +
(

1
2 Râ

0bc +
1√
2

β0Cabc

)
θb ∧ θc + Râ

0bĉθb ∧ θc +

+ 1
2 Râ

0b̂ĉ
θb ∧ θc + Râ

00bθ ∧ θb + Râ
00b̂

θ ∧ θb;

(5) dθ0
a = − 1√

2
β0θb

a ∧ θb +
(

1
2 R0

abc −
1√
2

β0Cabc

)
θb ∧ θc + R0

abĉθb ∧ θc +

+ 1
2 R0

ab̂ĉ
θb ∧ θc + R0

a0bθ ∧ θb + R0
a0b̂

θ ∧ θb;
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(6) dθ0
â = 1√

2
β0θa

b ∧ θb + 1
2 R0

âbcθb ∧ θc + R0
âbĉθb ∧ θc +

+
(

1
2 R0

0̂b̂ĉ
− 1√

2
β0Cabc

)
θb ∧ θc + R0

â0bθ ∧ θb + R0
â0b̂

θ ∧ θb;

(7)dθa
b + θa

c ∧ θc
b = 1

2 Ra
bcdθc ∧ θd +

(
Ra

bcd̂
− CadhChbc +

1
2 β0β0δa

c δd
b

)
θc ∧ θd +

+ 1
2 Ra

bĉd̂
θb ∧ θc + Ra

b0cθ ∧ θc + Ra
b0ĉθ ∧ θc. (130)

Comparing (130) with (83) and (128), we obtain that the essential nonzero components
of the Riemann–Christoffel tensor of an NTS-manifold on the space of the associated
G-structure have the form

(1) Ra
b̂cd

= 2CabhChcd − (β0)2δa
[cδb

d];

(2) Râ
bĉd̂

= 2CabhChcd − (β0)
2δ

[c
a δ

d]
b ;

(3) Râ
bcd = −2Cab[cd];

(4) Ra
b̂ĉd̂

= −2Cab[cd];

(5) Ra
00b = 1√

2

{
β00 − 1√

2
(β0)2

}
δa

b ;

(6) Râ
00b̂

= 1√
2

{
β00 − 1√

2
(β0)

2
}

δb
a ;

(7) R0
a0b̂

= − 1√
2

{
β00 − 1√

2
(β0)

2
}

δb
a ;

(8) R0
â0b = − 1√

2

{
β00 − 1√

2
(β0)2

}
δa

b ;

(9) Ra
bcd̂

= Aad
bc − CadhChbc +

1
2 β0(β0 − β0)δ

a
[bδd

c] −
1
2 β0β0δa

c δd
b , (131)

in addition to the ratios derived from them, considering the properties of symmetry. The
other components are zero.

Theorem 7. For any NTS-manifold, the following identities hold:

(1) R(Φ2X, Φ2Y)ξ − R(ΦX, ΦY)ξ = 0;

(2) R(Φ2X, Φ2Y)ξ + R(ΦX, ΦY)ξ = 0;

(3) R(ΦX, ΦY)ξ = 0;

(4) R(ξ, Φ2X)Φ2Y− R(ξ, ΦX)ΦY = 0; ∀X, Y, Z ∈ X (M). (132)

Proof. Let us apply the identity recovery procedure [28,29] to the equalities:

R0
0ab = Rc

0ab = Rĉ
0ab = 0, (133)

i.e., to the equality
Ri

0ab = 0, (134)

which we write as
{R(εa, εb)ξ}i = 0, (135)

i.e.,
R(εa, εb)ξ = 0. (136)

Because the projections of X (M) onto the subspaces D
√
−1

Φ and D0
Φ are the endomorphisms

π = σ ◦ l = −1
2

(
Φ2 +

√
−1Φ

)
(137)

and
m = η ⊗ ξ, (138)
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then
R
(

Φ2X +
√
−1ΦX, Φ2Y +

√
−1ΦY

)
ξ = 0, ∀X, Y, Z ∈ X (M). (139)

Separating the real and imaginary parts of the last equality, we obtain identities equivalent
to the identity

R(Φ2X, Φ2Y)ξ − R(ΦX, ΦY)ξ = 0; ∀X, Y, Z ∈ X (M). (140)

Similarly, applying the identity recovery procedure to the equalities

R0
0ab̂ = Rc

0ab̂ = Rĉ
0ab̂ = 0, (141)

we obtain the identity
R(Φ2X, Φ2Y)ξ + R(ΦX, ΦY)ξ = 0 (142)

for all X, Y, Z ∈ X (M). From the last two identities, it follows that

R(ΦX, ΦY)ξ = 0; ∀X, Y, Z ∈ X (M). (143)

Applying the identity recovery procedure to the equalities

R0
a0b = Rc

a0b = Rĉ
a0b = 0, (144)

we obtain the identity
R(ξ, Φ2X)Φ2Y− R(ξ, ΦX)ΦY = 0 (145)

for all X, Y, Z ∈ X (M).

The components of the Ricci tensor are calculated by the formula

Sij = −Rk
ijk. (146)

Let us calculate the components of the Ricci tensor of an NTS-manifold on the space of the
associated G-structure:

(1) S00 = −
√

2n
{

β00 − 1√
2
(β0)2

}
= −
√

2n
{

β00 − 1√
2
(β0)

2
}

;

(2) Sab̂ =
{

Acb
ac − CcbdCdac +

1
2 β0(β0 − β0)δ

c
[aδb

c] −
1
2 nβ0β0δb

a

}
−

−
{

2CcadCdbc − (β0)
2δ

[b
c δ

c]
a

}
−
√

2
{

β00 − 1√
2
(β0)2

}
δb

a ;

(3) Sb̂a =
{

Aac
cb − CacdCdcb +

1
2 β0(β0 − β0)δ

a
[cδc

b] −
1
2 nβ0β0δa

b

}
−

−
{

2CcadCdbc − (β0)2δc
[bδa

c]

}
−
√

2
{

β00 −
√

1
√

2(β0)2
}

δa
b . (147)

The other components are zero.

Remark 2. Using (84:1), (84:2), and (86:3), it is easy to show that

Sab̂ = Sb̂a. (148)

Remark 3. Because for an NTS-manifold

(1) S0a = S0â = Sa0 = Sâ0 = 0,

(2) Sab = Sâb̂ = 0, (149)

it follows from Theorem 6 in [32] that an NTS-manifold has the Φ-invariant Ricci tensor.
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Theorem 8. The Ricci tensor of an NTS-manifold satisfies the identities

(1) S(ξ, Φ2X) = 0;

(2) S(Φ2X, Φ2Y) = S(ΦX, ΦY) (150)

for all X, Y ∈ X (M).

Proof. Applying the identity recovery procedure to the equalities

(1) S0a = 0,

(2) Sab = 0, (151)

we obtain the required identities.

5. NTS-Manifolds of Constant Curvature

Le M be an NTS-manifold. As it is known [29], a pseudo-Riemannian manifold is a
manifold of pointwise constant curvature k if and only if its Riemannian curvature tensor
has the structure

R(X, Y)Z = k(〈Y, Z〉X− 〈X, Z〉Y) (152)

for all X, Y, Z ∈ X (M). This relation on the frame bundle space can be written in the form

Rijkl = k
(

gikgjl − gil gjk

)
, (153)

which, considering (131) and (12) on the space of the associated G-structure, is equivalent
to the following relations on the components of the Riemannian curvature tensor:

(1) Râ
bcd = −2Cab[cd] = 0;

(2) Ra
b̂cd

= kδab
cd = 2CabhChcd − (β0)2δa

[cδb
d];

(3) Ra
bcd̂

= kδa
c δd

b = Aad
bc − CadhChbc +

1
2 β0(β0 − β0)δ

a
[bδd

c] −
1
2 β0β0δa

c δd
b ;

(4) Ra
0b0 = kδa

b = − 1√
2

{
β00 − 1√

2
(β0)2

}
δa

b . (154)

From (86:5) and (154:1), it follows that

Cabcd = 0. (155)

Let us convolve the equality (154:4) by indexes a and b; then, we obtain

k = − 1√
2

{
β00 − 1√

2
(β0)2

}
. (156)

Let us convolve the equality (154:2) first by indexes a and c, and then by indexes b and d;
then, we obtain

k =
2

n(n− 1)
CabhChab −

1
2
(β0)2. (157)

Now, we convolve the equality (154:3) first by indexes a and c, and then by indexes b and d;
we obtain

kn2 = Aab
ab − CabcCabc +

1
4

β0(β0 − β0)n(n− 1)− 1
2

β0β0n2. (158)

By Theorem 2, an NTS-manifold is either trans-Sasakian or has a closed contact form and,
hence, by Theorem 5, it is locally most exactly conformal to a cosymplectic manifold. In the
first case, we have that Cabc = 0. From (157), we have

k = −1
2
(β0)2 ≤ 0. (159)
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Thus, we have proved the following theorem.

Theorem 9. An NTS-manifold of constant curvature is either a trans-Sasakian manifold of constant
negative curvature, or it has a closed contact form, and hence it is locally conformal to a closely
cosymplectic manifold of constant curvature. In particular, an NTS-manifold is of zero constant
curvature if and only if it is a cosymplectic manifold of constant curvature.

6. Curvature Identities

It is known [33] that A. Gray singled out three classes of almost Hermitian struc-
tures according to the symmetry properties of their Riemannian curvature tensor, i.e., by
differential-geometric invariants of the second order.

In almost contact geometry, the following analogs are introduced [34] for all
X, Y, Z, W ∈ X (M):

(1) CR1 : 〈R(ΦX, ΦY)ΦZ, ΦW〉 =
〈

R(Φ2X, Φ2Y)ΦZ, ΦW
〉
;

(2) CR2 : 〈R(ΦX, ΦY)ΦZ, ΦW〉 =
〈

R(Φ2X, Φ2Y)ΦZ, ΦW
〉
+

+
〈

R(Φ2X, ΦY)Φ2Z, ΦW
〉
+
〈

R(Φ2X, ΦY)ΦZ, Φ2W
〉
;

(3) CR3 : 〈R(ΦX, ΦY)ΦZ, ΦW〉 =
〈

R(Φ2X, Φ2Y)Φ2Z, Φ2W
〉
. (160)

Almost contact metric structures whose tensor R satisfies the identity CRi are called struc-
tures of the class CRi. The meaning of these curvature identities is most transparently
manifested in terms of the components of the Riemannian curvature tensor.

Theorem 10 ([34]). On the space of the associated G-structure, the identities CR1 − CR3 are
equivalent to the following equalities:

(1) CR1 ⇔ Râbcd = Rabcd = Râb̂cd = 0;

(2) CR2 ⇔ Râbcd = Rabcd = 0;

(3) CR3 ⇔ Râbcd = 0. (161)

Remark 4. According to formula (161), the inclusions CR1 ⊂ CR2 ⊂ CR3 are obvious.

Theorem 11. An NTS-manifold is a manifold of class CR3.

Proof. Since
Râbcd = 0 (162)

for an NTS-manifold, the required assertion follows by Theorem 10.

Theorem 12. An NTS-manifold is a manifold of class CR2 if and only if

Cabcd = 0 (163)

on the space of the associated G-structure.

Proof. Let an NTS-manifold be a manifold of class CR2, then

Rabcd = −Cab[cd] = 0, (164)

i.e.,
Cabcd = Cabdc. (165)

This equality, together with the equality

Ca[bcd] = 0, (166)
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gives
Cabcd = 0. (167)

Conversely, let the equality
Cabcd = 0 (168)

hold for an NTS-manifold; then,

Rabcd = −Cab[cd] = −
1
2
(Cabcd − Cabdc) = 0, (169)

i.e., an NTS-manifold is a manifold of class CR2.

Theorem 13. NTS-manifolds of class CR3 coincide with almost contact metric manifolds locally
conformal to closely cosymplectic manifolds.

Proof. Let an NTS-manifold be a manifold of class CR3; then

Ra
b̂cd = 2CabhChcd − (β0)2δa

[cδb
d] = 0. (170)

Let us convolve the obtained equality first by indexes a and c, and then by indexes b and
d; then,

2CabcCabc −
1
2

n(n− 1)(β0)2 = 0⇒ β0 =

√
4CabcCabc
n(n− 1)

. (171)

Similarly, from the condition

Râ
bĉd̂ = 2CabhChcd − (β0)

2δ
[c
a δ

d]
b = 0, (172)

we obtain

β0 =

√
4CabcCabc
n(n− 1)

, (173)

i.e.,

β0 =

√
4CabcCabc
n(n− 1)

= β0, (174)

and the NTS-manifold has a closed contact form. Hence, according to Theorem 5, NTS-
manifolds of class CR3 coincide with almost contact metric manifolds with closed contact
form locally conformal to closely cosymplectic manifolds.

Definition 4. An NTS-manifold whose curvature tensor satisfies the condition

R(ξ, Φ2X)ξ = 0, ∀X ∈ X (M), (175)

is called an NTS-manifold of the class CR4.

Identity (175) is equivalent to the identity

R(ξ, X)ξ = 0, ∀X ∈ X (M). (176)

Definition 5. An NTS-manifold whose curvature tensor satisfies the condition

R(ξ, Φ2X)Φ2Y + R(ξ, ΦX)ΦY = 0, ∀X, Y ∈ X (M) (177)

is called an NTS-manifold of the class CR5.
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Identity (177), considering identity (145), is equivalent to the identities

R(ξ, Φ2X)Φ2Y = R(ξ, ΦX)ΦY = 0, ∀X, Y ∈ X (M). (178)

Theorem 14. The class of NTS-manifolds of the class CR4 coincides with the class of NTS-
manifolds of the class CR5.

Proof. Let M be an NTS-manifold of class CR4; then, identity (176) holds, which, consider-
ing (131) on the space of the associated G-structure, is equivalent to the following equalities:

(1) Ra
00b = Râ

00b̂
= 0;

(2) Ra
0b0 = Râ

0b̂0
= 0. (179)

Due to the symmetry properties of the Riemannian curvature tensor from (179), we obtain:

(1) R0
â0b = R0

a0b̂
= 0;

(2) Rc
â0b = Rĉ

a0b̂
= 0;

(3) Rĉ
â0b = Rc

a0b̂
= 0. (180)

Applying the identity recovery procedure to the equality

Ri
â0b = 0, (181)

we obtain the identity (177). Thus, an NTS-manifold of class CR4 is a manifold of class CR5.
Similarly, one can prove that an NTS-manifold of class CR5 is an NTS-manifold of

class CR4.

Remark 5. On the space of the associated G-structure, identity (175) is equivalent to the equalities

Ri
00b = 0, (182)

and it is equivalent to the equality
Ra

00b = Râ
00b = 0. (183)

Identity (177) on the space of the associated G-structure is equivalent to the equalities

Ri
â0b = Ri

a0b̂ = 0, (184)

which is equivalent to the equalities

R0
â0b = R0

a0b̂ = 0. (185)

Let M be an NTS-manifold of class CR5; then,

R0
a0b̂ = − 1√

2

{
β00 −

1√
2
(β0)

2
}

δb
a = 0, (186)

i.e.,

β00 =
1√
2
(β0)

2. (187)

Differentiate externally (85:4); then, considering (187) and (73:3), we have

dβ00 ∧ θ + β00dθ = d
{

1√
2
(β0)

2
}
∧ θ +

1√
2

β00(β0 − β0)δ
b
a θa ∧ θb = 0, (188)
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i.e.,
√

2β0dβ0 ∧ θ +
1√
2

β00(β0 − β0)δ
b
a θa ∧ θb = 0, (189)

i.e.,
β00(β0 − β0)δ

b
a θa ∧ θb = 0. (190)

Due to the linear independence of the basic forms, we have

β00(β0 − β0)δ
b
a = 0, (191)

i.e.,
β00(β0 − β0) = 0. (192)

Hence,
(1) either

β00 = 0, (193)

i.e.,
β0 = 0, (194)

i.e., the manifold is cosymplectic;
(2) or

β0 − β0 = 0, (195)

i.e., the manifold has a closed contact form. This means that it is locally conformal to a
closely cosymplectic manifold.

Note that a manifold locally conformal to a closely cosymplectic manifold is a special
generalized Kenmotsu manifold of the second kind [35]. A special generalized Kenmotsu
manifold of the second kind is an NTS-manifold with a closed contact form [24]. Thus, we
have proved the following theorem.

Theorem 15. Let M be an NTS-manifold; then, it is a manifold of class CR5 if and only if it is a
special generalized Kenmotsu manifold of the second kind, i.e., it is locally conformal to a closely
cosymplectic manifold.

7. k-Nullity Distribution

Definition 6 ([36]). The k-nullity-distribution on a Riemannian manifold (M,g) for a real number
k is a distribution

N(k) : p→ Np(k). (196)

Therefore,

N(k) =
{

Z ∈ Tp M|R(X, Y)Z = k(g(Y, Z)X− g(X, Z)Y), X, Y, Z ∈ Tp M
}

, (197)

where R is the curvature operator of the metric g.

Let M2n+1 with (Φ, η, ξ, g) be an NTS-manifold, or the characteristic vector field ξ,
which belongs to the distribution N(k); then,

R(X, Y)ξ = k(g(Y, ξ)X− g(X, ξ)Y) = k(η(Y)X− η(X)Y). (198)

For example, Sasakian manifolds are characterized by the identity

R(X, Y)ξ = η(Y)X− η(X)Y. (199)

Therefore, a Sasakian manifold can be defined as a contact metric manifold whose vec-
tor field ξ belongs to the distribution N(1). A Kenmotsu manifold is characterized by
the identity

R(X, Y)ξ = −(η(Y)X− η(X)Y), (200)
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which means that a Kenmotsu manifold can be defined as a Riemannian manifold whose
vector field ξ belongs to the distribution N(−1).

Theorem 16. An NTS-manifold on which there exists an N(k)-distribution containing a character-
istic vector field ξ is a space of constant curvature k.

The proof of the theorem follows directly from (152), (154), and (198).

Theorem 17. An NTS-manifold on which there exists an N(k)-distribution containing the charac-
teristic vector field ξ is an NTS-manifold of class CR4.

The proof of the theorem follows directly from (178) and Theorem 14.

8. Conclusions

In this paper, it is proved that the class of NTS-manifolds with non-closed contact form
coincides with the class of almost contact metric manifolds homothetic to Sasaki varieties.
Additionally, the class of NTS-manifolds with a closed contact form coincides with the
class of almost contact metric manifolds with a closed contact form locally conformal
to closely cosymplectic manifolds. This article presents some interesting identities that
are satisfied by the Riemannian curvature tensor and the Ricci tensor. It is proved that
an NTS-manifold of constant curvature is either a trans-Sasakian manifold of constant
negative curvature, or it has a closed contact form, and hence it is locally conformal to a
closely cosymplectic manifold of constant curvature. In particular, an NTS-manifold is of
zero constant curvature if and only if it is a cosymplectic manifold of constant curvature.
Several classes of NTS-manifolds are distinguished. It is proved that NTS-manifolds
of class CR3 coincide with almost contact metric manifolds locally conformal to closely
cosymplectic manifolds. An NTS-manifold is a manifold of class CR5 if and only if it is a
special generalized Kenmotsu manifold of the second kind, i.e., it is locally conformal to a
closely cosymplectic manifold. It is proved that an NTS-manifold on which there exists an
N(k)-distribution containing a characteristic vector field ξ is a space of constant curvature
k. Further, an NTS-manifold on which there exists an N(k)-distribution containing the
characteristic vector field ξ is an NTS-manifold of class CR4.
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