Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = near-zero refractive index (NZRI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10192 KiB  
Article
A Negative Index Nonagonal CSRR Metamaterial-Based Compact Flexible Planar Monopole Antenna for Ultrawideband Applications Using Viscose-Wool Felt
by Kabir Hossain, Thennarasan Sabapathy, Muzammil Jusoh, Mahmoud A. Abdelghany, Ping Jack Soh, Mohamed Nasrun Osman, Mohd Najib Mohd Yasin, Hasliza A. Rahim and Samir Salem Al-Bawri
Polymers 2021, 13(16), 2819; https://doi.org/10.3390/polym13162819 - 22 Aug 2021
Cited by 18 | Viewed by 3353
Abstract
In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular- [...] Read more.
In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular- and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312 λ0 × 0.312 λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal–polymer adhesion. A naturally available polymer, wool, and a human-made polymer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications. Full article
(This article belongs to the Special Issue High Performance Textiles)
Show Figures

Figure 1

15 pages, 8451 KiB  
Article
Compact Ultra-Wideband Monopole Antenna Loaded with Metamaterial
by Samir Salem Al-Bawri, Hui Hwang Goh, Md Shabiul Islam, Hin Yong Wong, Mohd Faizal Jamlos, Adam Narbudowicz, Muzammil Jusoh, Thennarasan Sabapathy, Rizwan Khan and Mohammad Tariqul Islam
Sensors 2020, 20(3), 796; https://doi.org/10.3390/s20030796 - 31 Jan 2020
Cited by 56 | Viewed by 6267
Abstract
A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of [...] Read more.
A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property. The antenna offers a wide bandwidth from 3.08 to 14.1 GHz and an average gain of 4.54 dBi, with a peak gain of 6.12 dBi; this is in contrast to the poor performance when metamaterial is not used. Moreover, the maximum obtained radiation efficiency is 97%. A reasonable agreement between simulation and experiments is realized, demonstrating that the proposed antenna can operate over a wide bandwidth with symmetric split-ring resonator (SSRR) metamaterial structures and compact size of 14.5 × 22 mm2 (0.148 λ0 × 0.226 λ0) with respect to the lowest operating frequency. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave Sensors)
Show Figures

Figure 1

14 pages, 38076 KiB  
Article
Metamaterial Cell-Based Superstrate towards Bandwidth and Gain Enhancement of Quad-Band CPW-Fed Antenna for Wireless Applications
by Samir Salem Al-Bawri, Md Shabiul Islam, Hin Yong Wong, Mohd Faizal Jamlos, Adam Narbudowicz, Muzammil Jusoh, Thennarasan Sabapathy and Mohammad Tariqul Islam
Sensors 2020, 20(2), 457; https://doi.org/10.3390/s20020457 - 14 Jan 2020
Cited by 49 | Viewed by 7198
Abstract
A multiband coplanar waveguide (CPW)-fed antenna loaded with metamaterial unit cell for GSM900, WLAN, LTE-A, and 5G Wi-Fi applications is presented in this paper. The proposed metamaterial structure is a combination of various symmetric split-ring resonators (SSRR) and its characteristics were investigated for [...] Read more.
A multiband coplanar waveguide (CPW)-fed antenna loaded with metamaterial unit cell for GSM900, WLAN, LTE-A, and 5G Wi-Fi applications is presented in this paper. The proposed metamaterial structure is a combination of various symmetric split-ring resonators (SSRR) and its characteristics were investigated for two major axes directions at (x and y-axis) wave propagation through the material. For x-axis wave propagation, it indicates a wide range of negative refractive index in the frequency span of 2–8.5 GHz. For y-axis wave propagation, it shows more than 2 GHz bandwidth of near-zero refractive index (NZRI) property. Two categories of the proposed metamaterial plane were applied to enhance the bandwidth and gain. The measured reflection coefficient (S11) demonstrated significant bandwidths increase at the upper bands by 4.92–6.49 GHz and 3.251–4.324 GHz, considered as a rise of 71.4% and 168%, respectively, against the proposed antenna without using metamaterial. Besides being high bandwidth achieving, the proposed antenna radiates bi-directionally with 95% as the maximum radiation efficiency. Moreover, the maximum measured gain reaches 6.74 dBi by a 92.57% improvement compared with the antenna without using metamaterial. The simulation and measurement results of the proposed antenna show good agreement. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave Sensors)
Show Figures

Figure 1

15 pages, 1014 KiB  
Article
A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation
by Sikder Sunbeam Islam, Mohammad Rashed Iqbal Faruque and Mohammad Tariqul Islam
Materials 2015, 8(8), 4790-4804; https://doi.org/10.3390/ma8084790 - 29 Jul 2015
Cited by 95 | Viewed by 8875
Abstract
The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such [...] Read more.
The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

11 pages, 3527 KiB  
Article
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement
by Mohammad Habib Ullah, Mohammad Tariqul Islam and Mohammad Rashed Iqbal Faruque
Materials 2013, 6(11), 5058-5068; https://doi.org/10.3390/ma6115058 - 6 Nov 2013
Cited by 48 | Viewed by 8022
Abstract
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating [...] Read more.
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop