Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = natural fibre-reinforced composite (NFRC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5306 KiB  
Proceeding Paper
Experimental and Numerical Investigation of Jute Fibre-Reinforced Composite, a Sustainable Material for Green Energy
by Kirubakaran Covallane, Daryl Johan, Rakesh Kumar Singh, Rahul Sinha, Digvijay Boodala, Krishna Kumar Jaiswal and Karthik Selva Kumar
Eng. Proc. 2025, 95(1), 17; https://doi.org/10.3390/engproc2025095017 - 19 Jun 2025
Viewed by 431
Abstract
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a [...] Read more.
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a sustainable alternative for energy applications. This composite construction uses Soric XF (Lantor Composites, Veenendaal, The Netherlands) as the fibre reinforcement core material and jute fibre, an eco-friendly and sustainable substitute for glass fibre reinforcement composite materials, as the outer face sheet obtained from jute bags. The dry fibres are piled as dry loads at various fibre orientation angles, including 0°, 45°, and 90°, and this orientation will be reflected in the composite strength. Vacuum-assisted resin transfer moulding (VARTM) is a technique used to fabricate this material at room temperature. Further, this research focuses on a comparative analysis of experimental and computational results involving composite materials with jute fibre as the outer face sheet and Soric XF as the fibre reinforcement core material. The experimental investigation included tensile ASTM D638-03 and flexural ASTM D790 to evaluate the composite’s mechanical properties and structural integrity under various load conditions. Simultaneously the computational simulations were performed using the ANSYS-Mechanical 2023 R2 to replicate these conditions and predict the composite’s performance. The experimental and simulated data were analysed and compared. This study demonstrates the efficacy of using computational tools to predict the behaviour of natural fibre composites. It underscores the importance of experimental validation for enhancing the reliability of simulation models. The results from the computational study are compared with the experimental results to study the predictive nature of the NFRC material. Full article
Show Figures

Figure 1

16 pages, 5346 KiB  
Article
Usage of Natural Fibre Composites for Sustainable Material Development: Global Research Productivity Analysis
by Gobinath Ravindran, Vutukuru Mahesh, Naraindas Bheel, Sampada Chittimalla, Katakam Srihitha and Alamadri Sushmasree
Buildings 2023, 13(5), 1260; https://doi.org/10.3390/buildings13051260 - 11 May 2023
Cited by 16 | Viewed by 4561
Abstract
Natural-fibre-reinforced composites (NFRCs) are revolutionising the way materials are used for various purposes, and they have enriched applications from aerospace to concrete. In tandem with these works, sustainable materials that are eco-friendly and possess strength and endurance are rapidly replacing conventional materials. Recent [...] Read more.
Natural-fibre-reinforced composites (NFRCs) are revolutionising the way materials are used for various purposes, and they have enriched applications from aerospace to concrete. In tandem with these works, sustainable materials that are eco-friendly and possess strength and endurance are rapidly replacing conventional materials. Recent decades have shown that many exuberant, curious-minded researchers are working on this particular domain, creating numerous materials for a variety of applications. What exactly is being performed in the laboratory is not being carried out in the field and duly disseminated. The major constraint is knowledge sharing and bottlenecks involved in assessing that research. Scientometrics is a field providing access to the consolidated research landscape report on a particular topic informing research on what work is being performed, how it is performed, who performs it, and what is the future scope. In this work, we analyse the research works, trends, and challenges related to NFRCs for engineering applications. It is found that research works, and the utilisation related to NFRCs, have soared in the last two decades, which proves to be a promising area to work upon. We use the Scopus database for the analysis, and scientometric analysis is carried over with biblioshiny. We find that there is a decreasing trend in publications (−12.74%/year); 272 sources are involved with 1690 documents published containing 5554 authors with 54 single-authored documents. There are 3919 keywords involved with 16.51 average citations received for the documents published. This work can be used to understand the research trend and also to take up newer research. Full article
Show Figures

Figure 1

40 pages, 7074 KiB  
Review
The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review
by Muneer Ahmed. Musthaq, Hom Nath Dhakal, Zhongyi Zhang, Antigoni Barouni and Rizal Zahari
Polymers 2023, 15(5), 1229; https://doi.org/10.3390/polym15051229 - 28 Feb 2023
Cited by 39 | Viewed by 5982
Abstract
Studies into environmental conditions and their effects on the properties of renewable materials are gaining significant attention in the research field, particularly for natural fibres and their resultant composites. However, natural fibres are prone to water absorption because of the hydrophilic nature of [...] Read more.
Studies into environmental conditions and their effects on the properties of renewable materials are gaining significant attention in the research field, particularly for natural fibres and their resultant composites. However, natural fibres are prone to water absorption because of the hydrophilic nature of the fibres, which affects the overall mechanical properties of natural-fibre-reinforced composites (NFRCs). In addition, NFRCs are based mainly on thermoplastic and thermosetting matrices, which could be used in automobile and aerospace components as lightweight materials. Therefore, such components have to survive the maximum temperature and humid conditions in different parts of the world. Based on the above factors, through an up-to-date review, this paper critically discusses the effects of environmental conditions on the impact performance of NFRCs. In addition, this paper critically assesses the damage mechanisms of NFRCs and their hybrids by focusing more on moisture ingress and relative humidity in the impact damage behaviour of NFRCs. Full article
Show Figures

Figure 1

3 pages, 188 KiB  
Editorial
Natural Fibre Composites and Their Mechanical Behaviour
by Mariana Doina Banea
Polymers 2023, 15(5), 1185; https://doi.org/10.3390/polym15051185 - 26 Feb 2023
Cited by 5 | Viewed by 3339
Abstract
At present, natural-fibre-reinforced-composites (NFRCs) are seen as realistic alternatives to synthetic- (e [...] Full article
(This article belongs to the Special Issue Natural Fibre Composites and Their Mechanical Behavior)
19 pages, 2334 KiB  
Review
Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing
by Nishata Royan Rajendran Royan, Jie Sheng Leong, Wai Nam Chan, Jie Ren Tan and Zainon Sharmila Binti Shamsuddin
Polymers 2021, 13(14), 2289; https://doi.org/10.3390/polym13142289 - 13 Jul 2021
Cited by 77 | Viewed by 6881
Abstract
As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve [...] Read more.
As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years. This review attempts to summarise the current approaches of using NFRC as a feeder for AM. The effects of fibre treatments, composite preparation methods and addition of compatibilizer agents were analysed and discussed. Additionally, current methods of producing feeders from NFRCs were reviewed and discussed. Mechanical property of printed part was also dependent on the printing parameters, and thus the effects of printing temperature, layer height, infill and raster angle were discussed, and the best parameters reported by other researchers were identified. Following that, an overview of the mechanical properties of these composites as reported by various researchers was provided. Next, the use of optimisation techniques for NFRCs was discussed and analysed. Lastly, the review provided a critical discussion on the overall topic, identified all research gaps present in the use of NFRC for AM processes, and to overcome future challenges. Full article
(This article belongs to the Special Issue Natural Fibres and their Composites II)
Show Figures

Figure 1

34 pages, 3864 KiB  
Review
Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications
by Md Syduzzaman, Md Abdullah Al Faruque, Kadir Bilisik and Maryam Naebe
Coatings 2020, 10(10), 973; https://doi.org/10.3390/coatings10100973 - 13 Oct 2020
Cited by 194 | Viewed by 24450
Abstract
The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and [...] Read more.
The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and mechanical properties. Natural fibres are biodegradable, biocompatible, eco-friendly and created from renewable resources. Therefore, they are extensively used in place of expensive and non-renewable synthetic fibres, such as glass fibre, carbon fibre and aramid fibre, in many applications. Additionally, the NFRCs are used in automobile, aerospace, personal protective clothing, sports and medical industries as alternatives to the petroleum-based materials. To that end, in the last few decades numerous studies have been carried out on the natural fibre reinforced composites to address the problems associated with the reinforcement fibres, polymer matrix materials and composite fabrication techniques in particular. There are still some drawbacks to the natural fibre reinforced composites (NFRCs)—for example, poor interfacial adhesion between the fibre and the polymer matrix, and poor mechanical properties of the NFRCs due to the hydrophilic nature of the natural fibres. An up-to-date holistic review facilitates a clear understanding of the behaviour of the composites along with the constituent materials. This article intends to review the research carried out on the natural fibre reinforced composites over the last few decades. Furthermore, up-to-date encyclopaedic information about the properties of the NFRCs, major challenges and potential measures to overcome those challenges along with their prospective applications have been exclusively illustrated in this review work. Natural fibres are created from plant, animal and mineral-based sources. The plant-based cellulosic natural fibres are more economical than those of the animal-based fibres. Besides, these pose no health issues, unlike mineral-based fibres. Hence, in this review, the NFRCs fabricated with the plant-based cellulosic fibres are the main focus. Full article
(This article belongs to the Special Issue New Materials and Processing Methods of Composite Fibres)
Show Figures

Figure 1

Back to TopTop