Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = natroalunite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5397 KiB  
Article
Controlled Hydrothermal Precipitation of Alunite and Natroalunite in High-Aluminum Vanadium-Bearing Aqueous System
by Luyao Wang, Nannan Xue, Yimin Zhang and Pengcheng Hu
Minerals 2021, 11(8), 892; https://doi.org/10.3390/min11080892 - 18 Aug 2021
Cited by 13 | Viewed by 3316
Abstract
During the acid leaching process of black shale, with the destruction of the aluminosilicate mineral structure, a large amount of aluminum (Al) is leached, accompanied by the release of vanadium (V). To separate aluminum from the vanadium-containing solution, the precipitation behavior of aluminum [...] Read more.
During the acid leaching process of black shale, with the destruction of the aluminosilicate mineral structure, a large amount of aluminum (Al) is leached, accompanied by the release of vanadium (V). To separate aluminum from the vanadium-containing solution, the precipitation behavior of aluminum ions (Al3+) was investigated under hydrothermal conditions with the formation of alunite and natroalunite. In the solution environment, alunite and natroalunite are able to form stably by the Al3+ hydrolysis precipitation process at a temperature of 200 °C, a pH value of 0.4 and a reaction time of 5 h. When Al3+ was precipitated at a K/Al molar ratio of 1, the aluminum precipitation efficiency and the vanadium precipitation efficiency were 64.77% and 1.72%, respectively. However, when Al3+ was precipitated at a Na/Al molar ratio of 1, the precipitation efficiency of the aluminum decreased to 48.71% and the vanadium precipitation efficiency increased to 4.36%. The thermodynamics and kinetics results showed that alunite forms more easily than natroalunite, and the reaction rate increases with increasing temperature, and the precipitation is controlled by the chemical reaction. Vanadium loss increases as the pH value increases. It can be deduced that the ion state of tetravalent vanadium (VO2+) was transformed into the ion state of pentavalent vanadium (VO2+) in the hydrothermal environment. The VO2+ can be adsorbed on the alunite or natroalunite as a result of their negative surface charges, ultimately leading to vanadium loss. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop