Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nanoarchitecture carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4480 KiB  
Article
Fabricating BiOCl Nanoflake/FeOCl Nanospindle Heterostructures for Efficient Visible-Light Photocatalysis
by Heng Guo, Yangzhou Deng, Haoyong Yin, Juanjuan Liu and Shihui Zou
Molecules 2023, 28(19), 6949; https://doi.org/10.3390/molecules28196949 - 6 Oct 2023
Cited by 7 | Viewed by 1933
Abstract
Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were [...] Read more.
Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were employed to investigate the synthesized materials. The results demonstrate that the in situ reaction between the Bi precursors and the surface Cl of FeOCl enabled the bounded nucleation and growth of BiOCl on the surface of FeOCl nanospindles. Stable interfacial structures were established between BiOCl nanoflakes and FeOCl nanospindles using Cl as the bridge. Regulating the Bi-to-Fe ratios allowed for the optimization of the BiOCl/FeOCl interface, thereby facilitating the separation of photogenerated carriers and accelerating the photocatalytic degradation of RhB. The BiOCl/FeOCl heterostructures with an optimal composition of 15% BiOCl exhibited ~90 times higher visible-light photocatalytic activity than FeOCl. Based on an analysis of the band structures and reactive oxygen species, we propose an S-scheme mechanism to elucidate the significantly enhanced photocatalytic performance observed in the BiOCl/FeOCl heterostructures. Full article
(This article belongs to the Topic Fabrication of Hybrid Materials for Catalysis)
Show Figures

Figure 1

21 pages, 4277 KiB  
Article
Influence of Surface-Modification via PEGylation or Chitosanization of Lipidic Nanocarriers on In Vivo Pharmacokinetic/Pharmacodynamic Profiles of Apixaban
by Mohamed F. Zaky, Taha M. Hammady, Shadeed Gad, Abdullah Alattar, Reem Alshaman, Ann Hegazy, Sawsan A. Zaitone, Mamdouh Mostafa Ghorab and Mohamed A. Megahed
Pharmaceutics 2023, 15(6), 1668; https://doi.org/10.3390/pharmaceutics15061668 - 7 Jun 2023
Cited by 7 | Viewed by 2498
Abstract
Nanostructured lipid carriers (NLCs) have been proven to significantly improve the bioavailability and efficacy of many drugs; however, they still have many limitations. These limitations could hinder their potential for enhancing the bioavailability of poorly water-soluble drugs and, therefore, require further amendments. From [...] Read more.
Nanostructured lipid carriers (NLCs) have been proven to significantly improve the bioavailability and efficacy of many drugs; however, they still have many limitations. These limitations could hinder their potential for enhancing the bioavailability of poorly water-soluble drugs and, therefore, require further amendments. From this perspective, we have investigated how the chitosanization and PEGylation of NLCs affected their ability to function as a delivery system for apixaban (APX). These surface modifications could enhance the ability of NLCs to improve the bioavailability and pharmacodynamic activity of the loaded drug. In vitro and in vivo studies were carried out to examine APX-loaded NLCs, chitosan-modified NLCs, and PEGylated NLCs. The three nanoarchitectures displayed a Higuchi-diffusion release pattern in vitro, in addition to having their vesicular outline proven via electron microscopy. PEGylated and chitosanized NLCs retained good stability over 3 months, versus the nonPEGylated and nonchitosanized NLCs. Interestingly, APX-loaded chitosan-modified NLCs displayed better stability than the APX-loaded PEGylated NLCs, in terms of mean vesicle size after 90 days. On the other hand, the absorption profile of APX (AUC0-inf) in rats pretreated with APX-loaded PEGylated NLCs (108.59 µg·mL−1·h−1) was significantly higher than the AUC0-inf of APX in rats pretreated with APX-loaded chitosan-modified NLCs (93.397 µg·mL−1·h−1), and both were also significantly higher than AUC0-inf of APX-Loaded NLCs (55.435 µg·mL−1·h−1). Chitosan-coated NLCs enhanced APX anticoagulant activity with increased prothrombin time and activated partial thromboplastin time by 1.6- and 1.55-folds, respectively, compared to unmodified NLCs, and by 1.23- and 1.37-folds, respectively, compared to PEGylated NLCs. The PEGylation and chitosanization of NLCs enhanced the bioavailability and anticoagulant activity of APX over the nonmodified NLCs; this highlighted the importance of both approaches. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Drug Delivery)
Show Figures

Graphical abstract

14 pages, 3174 KiB  
Article
pH-Dependent Behavior of Novel 5-FU Delivery System in Environmental Conditions Comparable to the Gastro-Intestinal Tract
by Geza Lazar, Fran Nekvapil, Branko Glamuzina, Tudor Tamaș, Lucian Barbu-Tudoran, Maria Suciu and Simona Cinta Pinzaru
Pharmaceutics 2023, 15(3), 1011; https://doi.org/10.3390/pharmaceutics15031011 - 21 Mar 2023
Cited by 4 | Viewed by 2494
Abstract
A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased [...] Read more.
A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased effectiveness in colorectal cancer cure provided that the formulation would successfully pass through the gastric acid conditions. Following the recently proven viability of the concept by demonstrating the slow release of the drug from the carrier using the highly sensitive SERS technique, here we investigated the 5-FU release from the composite tablet drug in pH conditions replicating the gastric environment. The released drug from the tablet was studied in solutions with three relevant pH values, pH 2, pH 3, and pH 4. The 5-FU SERS spectral signature for each pH value was used to build calibration curves for quantitative SERS analysis. The results suggested a similarly slow-releasing pattern in acid pH environments to that in neutral conditions. Although biogenic calcite dissolution was expected in acid conditions, the X-ray diffraction and Raman spectroscopy showed preservation of calcite mineral along with the monohydrocalcite during acid solution exposure for two hours. The total released amount in a time course of seven hours, however, was lower in acidic pH solutions, with a maximum fraction of ~40% of the total amount of loaded drug, for pH 2, as opposed to ~80% for neutral values. Nonetheless, these results clearly prove that the novel composite drug retains its slow-releasing character in environmental conditions compatible with the gastrointestinal pH and that it is a viable and biocompatible alternative for oral delivery of anticancer drug to reach the lower gastro-intestinal tract. Full article
Show Figures

Figure 1

18 pages, 23743 KiB  
Article
Spectral Engineering of Hybrid Biotemplated Photonic/Photocatalytic Nanoarchitectures
by Gábor Piszter, Krisztián Kertész, Dávid Kovács, Dániel Zámbó, Zsófia Baji, Levente Illés, Gergely Nagy, József Sándor Pap, Zsolt Bálint and László Péter Biró
Nanomaterials 2022, 12(24), 4490; https://doi.org/10.3390/nano12244490 - 19 Dec 2022
Cited by 6 | Viewed by 1915
Abstract
Solar radiation is a cheap and abundant energy for water remediation, hydrogen generation by water splitting, and CO2 reduction. Supported photocatalysts have to be tuned to the pollutants to be eliminated. Spectral engineering may be a handy tool to increase the efficiency [...] Read more.
Solar radiation is a cheap and abundant energy for water remediation, hydrogen generation by water splitting, and CO2 reduction. Supported photocatalysts have to be tuned to the pollutants to be eliminated. Spectral engineering may be a handy tool to increase the efficiency or the selectivity of these. Photonic nanoarchitectures of biological origin with hierarchical organization from nanometers to centimeters are candidates for such applications. We used the blue wing surface of laboratory-reared male Polyommatus icarus butterflies in combination with atomic layer deposition (ALD) of conformal ZnO coating and octahedral Cu2O nanoparticles (NP) to explore the possibilities of engineering the optical and catalytic properties of hybrid photonic nanoarchitectures. The samples were characterized by UV-Vis spectroscopy and optical and scanning electron microscopy. Their photocatalytic performance was benchmarked by comparing the initial decomposition rates of rhodamine B. Cu2O NPs alone or on the butterfly wings, covered by a 5 nm thick layer of ZnO, showed poor performance. Butterfly wings, or ZnO coated butterfly wings with 15 nm ALD layer showed a 3 to 3.5 times enhancement as compared to bare glass. The best performance of almost 4.3 times increase was obtained for the wings conformally coated with 15 nm ZnO, deposited with Cu2O NPs, followed by conformal coating with an additional 5 nm of ZnO by ALD. This enhanced efficiency is associated with slow light effects on the red edge of the reflectance maximum of the photonic nanoarchitectures and with enhanced carrier separation through the n-type ZnO and the p-type Cu2O heterojunction. Properly chosen biologic photonic nanoarchitectures in combination with carefully selected photocatalyst(s) can significantly increase the photodegradation of pollutants in water under visible light illumination. Full article
(This article belongs to the Special Issue Nanostructures for Advanced Photonic Devices)
Show Figures

Graphical abstract

19 pages, 1834 KiB  
Review
Nanoarchitectures in Management of Fungal Diseases: An Overview
by Vijay Mishra, Manvendra Singh, Yachana Mishra, Nitin Charbe, Pallavi Nayak, Kalvatala Sudhakar, Alaa A. A. Aljabali, Seyed H. Shahcheraghi, Hamid Bakshi, Ángel Serrano-Aroca and Murtaza M. Tambuwala
Appl. Sci. 2021, 11(15), 7119; https://doi.org/10.3390/app11157119 - 31 Jul 2021
Cited by 20 | Viewed by 4431
Abstract
Fungal infections, from mild itching to fatal infections, lead to chronic diseases and death. Antifungal agents have incorporated chemical compounds and natural products/phytoconstituents in the management of fungal diseases. In contrast to antibacterial research, novel antifungal drugs have progressed more swiftly because of [...] Read more.
Fungal infections, from mild itching to fatal infections, lead to chronic diseases and death. Antifungal agents have incorporated chemical compounds and natural products/phytoconstituents in the management of fungal diseases. In contrast to antibacterial research, novel antifungal drugs have progressed more swiftly because of their mild existence and negligible resistance of infections to antifungal bioactivities. Nanotechnology-based carriers have gained much attention due to their magnificent abilities. Nanoarchitectures have served as excellent carriers/drug delivery systems (DDS) for delivering antifungal drugs with improved antifungal activities, bioavailability, targeted action, and reduced cytotoxicity. This review outlines the different fungal diseases and their treatment strategies involving various nanocarrier-based techniques such as liposomes, transfersomes, ethosomes, transethosomes, niosomes, spanlastics, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, and nanoemulsions, among other nanotechnological approaches. Full article
(This article belongs to the Special Issue Nanomaterials in Medical Engineering)
Show Figures

Figure 1

25 pages, 11781 KiB  
Review
Morphology-Governed Performance of Plasmonic Photocatalysts
by Zhishun Wei, Marcin Janczarek, Kunlei Wang, Shuaizhi Zheng and Ewa Kowalska
Catalysts 2020, 10(9), 1070; https://doi.org/10.3390/catal10091070 - 17 Sep 2020
Cited by 22 | Viewed by 3984
Abstract
Plasmonic photocatalysts have been extensively studied for the past decade as a possible solution to energy crisis and environmental problems. Although various reports on plasmonic photocatalysts have been published, including synthesis methods, applications, and mechanism clarifications, the quantum yields of photochemical reactions are [...] Read more.
Plasmonic photocatalysts have been extensively studied for the past decade as a possible solution to energy crisis and environmental problems. Although various reports on plasmonic photocatalysts have been published, including synthesis methods, applications, and mechanism clarifications, the quantum yields of photochemical reactions are usually too low for commercialization. Accordingly, it has been proposed that preparation of plasmonic photocatalysts with efficient light harvesting and inhibition of charge carriers’ recombination might result in improvement of photocatalytic activity. Among various strategies, nano-architecture of plasmonic photocatalysts seems to be one of the best strategies, including the design of properties for both semiconductor and noble-metal-deposits, as well as the interactions between them. For example, faceted nanoparticles, nanotubes, aerogels, and super-nano structures of semiconductors have shown the improvement of photocatalytic activity and stability. Moreover, the selective deposition of noble metals on some parts of semiconductor nanostructures (e.g., specific facets, basal or lateral surfaces) results in an activity increase. Additionally, mono-, bi-, and ternary-metal-modifications have been proposed as the other ways of performance improvement. However, in some cases, the interactions between different noble metals might cause unwanted charge carriers’ recombination. Accordingly, this review discusses the recent strategies on the improvements of the photocatalytic performance of plasmonic photocatalysts. Full article
(This article belongs to the Special Issue Plasmonic Photocatalysts)
Show Figures

Graphical abstract

8 pages, 5077 KiB  
Communication
Non-Covalent Loading of Anti-Cancer Doxorubicin by Modularizable Peptide Self-Assemblies for a Nanoscale Drug Carrier
by Kin-ya Tomizaki, Kohei Kishioka, Shunsuke Kataoka, Makoto Miyatani, Takuya Ikeda, Mami Komada, Takahito Imai and Kenji Usui
Molecules 2017, 22(11), 1916; https://doi.org/10.3390/molecules22111916 - 6 Nov 2017
Cited by 9 | Viewed by 5463
Abstract
We prepared nanoscale, modularizable, self-assembled peptide nanoarchitectures with diameters less of than 20 nm by combining β-sheet-forming peptides tethering a cell-penetrating peptide or a nuclear localization signal sequence. We also found that doxorubicin (Dox), an anti-cancer drug, was non-covalently accommodated by the assemblies [...] Read more.
We prepared nanoscale, modularizable, self-assembled peptide nanoarchitectures with diameters less of than 20 nm by combining β-sheet-forming peptides tethering a cell-penetrating peptide or a nuclear localization signal sequence. We also found that doxorubicin (Dox), an anti-cancer drug, was non-covalently accommodated by the assemblies at a ratio of one Dox molecule per ten peptides. The Dox-loaded peptide assemblies facilitated cellular uptake and subsequent nuclear localization in HeLa cells, and induced cell death even at low Dox concentrations. This peptide nanocarrier motif is a promising platform for a biocompatible drug delivery system by altering the targeting head groups of the carrier peptides. Full article
(This article belongs to the Special Issue Peptide Therapeutics)
Show Figures

Graphical abstract

25 pages, 1654 KiB  
Review
Nano-Assemblies of Modified Cyclodextrins and Their Complexes with Guest Molecules: Incorporation in Nanostructured Membranes and Amphiphile Nanoarchitectonics Design
by Leïla Zerkoune, Angelina Angelova and Sylviane Lesieur
Nanomaterials 2014, 4(3), 741-765; https://doi.org/10.3390/nano4030741 - 20 Aug 2014
Cited by 84 | Viewed by 13205
Abstract
A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic [...] Read more.
A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media. Full article
(This article belongs to the Special Issue Self-Assembled Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop