Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mutational analysis of interferon antagonist

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2284 KiB  
Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
by Ericka Tudhope, Camilla M. Donnelly, Ashish Sethi, Cassandra David, Nicholas Williamson, Murray Stewart, Jade K. Forwood, Paul R. Gooley and Gregory W. Moseley
Viruses 2025, 17(8), 1075; https://doi.org/10.3390/v17081075 (registering DOI) - 1 Aug 2025
Abstract
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for [...] Read more.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2653 KiB  
Article
Respiratory Syncytial Virus Vaccine Design Using Structure-Based Machine-Learning Models
by Thomas C. McCarty and Iosif I. Vaisman
Viruses 2024, 16(6), 821; https://doi.org/10.3390/v16060821 - 22 May 2024
Cited by 1 | Viewed by 2250
Abstract
When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct [...] Read more.
When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2024)
Show Figures

Figure 1

1 pages, 172 KiB  
Abstract
Induction of the Type I IFN Response by Human Metapneumovirus Lacking SH, G, or M2.2 Expression
by Kevin Groen, Stefan van Nieuwkoop, Ron Fouchier and Bernadette van den Hoogen
Proceedings 2020, 50(1), 143; https://doi.org/10.3390/proceedings2020050143 - 11 Aug 2020
Viewed by 1353
Abstract
The human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a major cause of respiratory illness, primarily in young children, the elderly, and immunocompromised individuals. Having a fundamental understanding of the viral evasion of innate immune responses is crucial for the rational [...] Read more.
The human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a major cause of respiratory illness, primarily in young children, the elderly, and immunocompromised individuals. Having a fundamental understanding of the viral evasion of innate immune responses is crucial for the rational design of antiviral therapies. Several studies have reported on how HMPV subverts innate immune responses, with roles for SH, G, and M2.2 proteins. However, these studies often conflict. It has also been reported that eliminating the M2.2 ORF results in insertions and deletions around the M2.2 ORF, which could result in an M2.2-independent interaction with the immune system. We aimed to investigate how HMPV interacts with the innate immune response. Therefore, recombinant viruses lacking M2.2, SH, or G protein expression were generated either by deletion or by ablation of protein expression through mutations. Phenotypic analysis revealed that viruses lacking M2.2 expression are attenuated on interferon-competent A549 cells, but not on interferon-deficient cells. Deletion of ORFs compared to ablation of expression through mutations did not result in differences in replication kinetics. Viruses lacking M2.2 expression induced interferon-ẞ protein production, indicating interferon-antagonistic functions of the M2.2 protein, as previously reported. Phenotypic analysis of A549 cells knocked out for RIG-I, MAVS, and PKR revealed the role of RIG-I in the immune response towards HMPV. Next-generation sequencing analysis of viruses lacking M2.2 expression but not G or SH expression showed hypermutation throughout the virus genome. The hypermutation patterns suggest a role for adenosine deaminase acting on RNA (ADAR) editing. We addressed the question of whether RIG-I activation by viruses lacking M2.2 expression is due to hypermutated genomes or the absence of M2.2 as an interferon antagonist. Additionally, we investigated the role of ADAR in HMPV infection. We present our data on the possible influence of ADAR in HMPV infection by next-generation sequencing of viral stocks in cell knockdowns of ADAR generated by CRISPR-interference. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
Back to TopTop