Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = multivalent DNA-binding proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2522 KB  
Article
Development of Plant-Based Multivalent Vaccine Candidates for SARS-CoV-2 and Influenza Virus Using Inactivated Lactococcus
by Dong-Sook Lee, Hasanul Banna, Heeyeon Kim, Md Rezaul Islam Khan, Hai-Ping Diao, Shi-Jian Song, Young-Eui Kim, Haeji Kang, Jungsang Ryou, Joo-Yeon Lee, Jang-Hoon Choi, Inhwan Hwang and Sehee Park
Vaccines 2025, 13(3), 254; https://doi.org/10.3390/vaccines13030254 - 27 Feb 2025
Viewed by 2583
Abstract
Background/Objectives: Since December 2019, the COVID-19 pandemic, driven by SARS-CoV-2, has caused ~690 million infections globally, manifesting with mild to severe symptoms, including pneumonia. After reduced activity, seasonal influenza re-emerged in winter 2022, creating a “twindemic” with SARS-CoV-2. Co-infections have been associated with [...] Read more.
Background/Objectives: Since December 2019, the COVID-19 pandemic, driven by SARS-CoV-2, has caused ~690 million infections globally, manifesting with mild to severe symptoms, including pneumonia. After reduced activity, seasonal influenza re-emerged in winter 2022, creating a “twindemic” with SARS-CoV-2. Co-infections have been associated with higher risks, such as increased ventilator use and mortality, emphasizing the need for dual-target vaccines. This study investigates plant-based vaccines produced using a bacterium-like particle (BLP) system from Lactobacillus sakei to co-target SARS-CoV-2 and influenza. Methods: DNA fragments of the SARS-CoV-2 Omicron BA.1 variant spike (S) protein and H1N1 virus hemagglutinin (HA) ectodomain were synthesized and used to create recombinant constructs introduced into Agrobacterium. Protein expression was analyzed using Western blot and Bradford protein assays. Six-week-old K18-hACE2 mice were immunized with these antigens and challenged with influenza, SARS-CoV-2, or both to assess viral load and lung pathology at various times. Results: The SARS-CoV-2 S protein and influenza HA protein were successfully expressed in Nicotiana benthamiana and demonstrated strong binding to BLPs. In mouse models (BALB/c and K18-hACE2), these vaccines elicited potent humoral and cellular immune responses, with high neutralizing antibody titers and increased IFN-γ levels. Vaccinated mice demonstrated protection against viral challenges, reduced lung viral loads, and improved survival. In cases of co-infection, vaccinated mice showed rapid recovery and effective viral clearance, highlighting the potential of vaccines to combat simultaneous SARS-CoV-2 and influenza infections. Conclusions: Our findings highlight the potential of BLP-based multivalent vaccines for dual protection against major public health threats. Full article
(This article belongs to the Special Issue Production of Plant-Based Vaccines and Therapeutics)
Show Figures

Figure 1

25 pages, 5818 KB  
Article
A Multivalent mRNA Therapeutic Vaccine Exhibits Breakthroughs in Immune Tolerance and Virological Suppression of HBV by Stably Presenting the Pre-S Antigen on the Cell Membrane
by Shang Liu, Jie Wang, Yunxuan Li, Muhan Wang, Pei Du, Zhijie Zhang, Wenguo Li, Rongchen Sun, Mingtao Fan, Meijia Yang and Hongping Yin
Pharmaceutics 2025, 17(2), 211; https://doi.org/10.3390/pharmaceutics17020211 - 7 Feb 2025
Cited by 4 | Viewed by 3603
Abstract
Background/Objectives: In chronic hepatitis B infection (CHB), the hepatitis B surface antigen (HBsAg) continuously exhausts the hepatitis B surface antibody (HBsAb), which leads to the formation of immune tolerance. Accordingly, the hepatitis B virus (HBV) infection can be blocked by inhibiting the [...] Read more.
Background/Objectives: In chronic hepatitis B infection (CHB), the hepatitis B surface antigen (HBsAg) continuously exhausts the hepatitis B surface antibody (HBsAb), which leads to the formation of immune tolerance. Accordingly, the hepatitis B virus (HBV) infection can be blocked by inhibiting the binding of the hepatitis B surface pre-S1/pre-S2 antigen to the hepatocyte receptor NTCP, but the clinical cure rate of pre-S-based vaccines for CHB is limited. Methods: In this study, we designed and prepared multivalent hepatitis B therapeutic mRNA vaccines encoding three hepatitis B surface antigen proteins (L, M, and S) at the cell membrane, verified via in vitro transfection and expression experiments. An in vivo immunization experiment in HBV transgenic (Tg) mice was first completed. Subsequently, an adeno-associated virus plasmid vector carrying the HBV1.2-fold genome (pAAV HBV1.2) model and the adeno-associated virus vector carrying HBV1.3-fold genome (rAAV HBV1.3) model were constructed and immunized with mRNA vaccines. The HBV antigen, antibodies, and HBV DNA in serum were detected. Indirect (enzyme-linked immunosorbent assay) ELISA were made to analyze the activated antigen-specific IgG in HBV Tg mice. Antigen-dependent T-cell activation experiments were carried out, as well as the acute toxicity tests in mice. Results: The L protein/pre-S antigens could be stably presented at the cell membrane with the support of the S protein (and M protein). After vaccinations, the vaccines effectively reactivated the production of high levels of HBsAb, disrupted immune tolerance, and activated the production of high-affinity antibodies against structural pre-S antigen in HBV Tg mice. The HBsAg seroconversion and serum HBV DNA clearance were achieved in two HBV mice models. Furthermore, pre-S antigen-dependent T-cell response against HBV infection was confirmed. The therapeutic vaccine also showed safety in mice. Conclusions: A novel therapeutic mRNA vaccine was developed to break through HBsAg-mediated immune tolerance and treat CHB by stably presenting the pre-S antigen at the membrane, and the vaccine has great potential for the functional cure of CHB. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

19 pages, 4336 KB  
Review
CTCF and Its Multi-Partner Network for Chromatin Regulation
by Aylin Del Moral-Morales, Marisol Salgado-Albarrán, Yesennia Sánchez-Pérez, Nina Kerstin Wenke, Jan Baumbach and Ernesto Soto-Reyes
Cells 2023, 12(10), 1357; https://doi.org/10.3390/cells12101357 - 10 May 2023
Cited by 16 | Viewed by 8041
Abstract
Architectural proteins are essential epigenetic regulators that play a critical role in organizing chromatin and controlling gene expression. CTCF (CCCTC-binding factor) is a key architectural protein responsible for maintaining the intricate 3D structure of chromatin. Because of its multivalent properties and plasticity to [...] Read more.
Architectural proteins are essential epigenetic regulators that play a critical role in organizing chromatin and controlling gene expression. CTCF (CCCTC-binding factor) is a key architectural protein responsible for maintaining the intricate 3D structure of chromatin. Because of its multivalent properties and plasticity to bind various sequences, CTCF is similar to a Swiss knife for genome organization. Despite the importance of this protein, its mechanisms of action are not fully elucidated. It has been hypothesized that its versatility is achieved through interaction with multiple partners, forming a complex network that regulates chromatin folding within the nucleus. In this review, we delve into CTCF’s interactions with other molecules involved in epigenetic processes, particularly histone and DNA demethylases, as well as several long non-coding RNAs (lncRNAs) that are able to recruit CTCF. Our review highlights the importance of CTCF partners to shed light on chromatin regulation and pave the way for future exploration of the mechanisms that enable the finely-tuned role of CTCF as a master regulator of chromatin. Full article
Show Figures

Figure 1

17 pages, 1853 KB  
Review
Multivalent Aptamer Approach: Designs, Strategies, and Applications
by Zhong Wang, Xiuying Yang, Nicholas Zhou Lee and Xudong Cao
Micromachines 2022, 13(3), 436; https://doi.org/10.3390/mi13030436 - 12 Mar 2022
Cited by 49 | Viewed by 8243
Abstract
Aptamers are short and single-stranded DNA or RNA molecules with highly programmable structures that give them the ability to interact specifically with a large variety of targets, including proteins, cells, and small molecules. Multivalent aptamers refer to molecular constructs that combine two or [...] Read more.
Aptamers are short and single-stranded DNA or RNA molecules with highly programmable structures that give them the ability to interact specifically with a large variety of targets, including proteins, cells, and small molecules. Multivalent aptamers refer to molecular constructs that combine two or more identical or different types of aptamers. Multivalency increases the avidity of aptamers, a particularly advantageous feature that allows for significantly increased binding affinities in comparison with aptamer monomers. Another advantage of multivalency is increased aptamer stabilities that confer improved performances under physiological conditions for various applications in clinical settings. The current study aims to review the most recent developments in multivalent aptamer research. The review will first discuss structures of multivalent aptamers. This is followed by detailed discussions on design strategies of multivalent aptamer approaches. Finally, recent developments of the multivalent aptamer approach in biosensing and biomedical applications are highlighted. Full article
(This article belongs to the Special Issue Lab-on-a-Chip and Organ-on-a-Chip: Fabrications and Applications)
Show Figures

Figure 1

15 pages, 2615 KB  
Article
In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome
by Olga Gourdomichali, Katerina Zonke, Fedon-Giasin Kattan, Manousos Makridakis, Georgia Kontostathi, Antonia Vlahou and Epaminondas Doxakis
Biology 2022, 11(2), 287; https://doi.org/10.3390/biology11020287 - 11 Feb 2022
Cited by 2 | Viewed by 4045
Abstract
TIA1 is a broadly expressed DNA/RNA binding protein that regulates multiple aspects of RNA metabolism. It is best known for its role in stress granule assembly during the cellular stress response. Three RNA recognition motifs mediate TIA1 functions along with a prion-like domain [...] Read more.
TIA1 is a broadly expressed DNA/RNA binding protein that regulates multiple aspects of RNA metabolism. It is best known for its role in stress granule assembly during the cellular stress response. Three RNA recognition motifs mediate TIA1 functions along with a prion-like domain that supports multivalent protein-protein interactions that are yet poorly characterized. Here, by fusing the enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to TIA1 combined with mass spectrometry, the proteins in the immediate vicinity of TIA1 were defined in situ. Eighty-six and 203 protein partners, mostly associated with ribonucleoprotein complexes, were identified in unstressed control and acute stress conditions, respectively. Remarkably, the repertoire of TIA1 protein partners was highly dissimilar between the two cellular states. Under unstressed control conditions, the biological processes associated with the TIA1 interactome were enriched for cytosolic ontologies related to mRNA metabolism, such as translation initiation, nucleocytoplasmic transport, and RNA catabolism, while the protein identities were primarily represented by RNA binding proteins, ribosomal subunits, and eicosanoid regulators. Under acute stress, TIA1-labeled partners displayed a broader subcellular distribution that included the chromosomes and mitochondria. The enriched biological processes included splicing, translation, and protein synthesis regulation, while the molecular function of the proteins was enriched for RNA binding activity, ribosomal subunits, DNA double-strand break repair, and amide metabolism. Altogether, these data highlight the TIA1 spatial environment with its different partners in diverse cellular states and pave the way to dissect TIA1 role in these processes. Full article
(This article belongs to the Special Issue RNA-Binding Proteins: Function, Dysfunction and Disease)
Show Figures

Figure 1

21 pages, 3076 KB  
Review
Current Understanding of Molecular Phase Separation in Chromosomes
by Je-Kyung Ryu, Da-Eun Hwang and Jeong-Mo Choi
Int. J. Mol. Sci. 2021, 22(19), 10736; https://doi.org/10.3390/ijms221910736 - 4 Oct 2021
Cited by 23 | Viewed by 6723
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and [...] Read more.
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures. Full article
Show Figures

Figure 1

34 pages, 2975 KB  
Review
Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition
by Claudia Riccardi, Ettore Napolitano, Domenica Musumeci and Daniela Montesarchio
Molecules 2020, 25(22), 5227; https://doi.org/10.3390/molecules25225227 - 10 Nov 2020
Cited by 37 | Viewed by 6936
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been [...] Read more.
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future. Full article
Show Figures

Graphical abstract

15 pages, 2963 KB  
Article
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET)
by Jacob L. Litke, Yan Li, Laura M. Nocka and Ishita Mukerji
Int. J. Mol. Sci. 2016, 17(3), 366; https://doi.org/10.3390/ijms17030366 - 10 Mar 2016
Cited by 8 | Viewed by 9304
Abstract
Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic [...] Read more.
Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic measurements are used to elucidate the ion binding site and the mechanism of junction conformational change. Förster resonance energy transfer measurements of end-labeled junctions monitored junction conformation and ion binding affinity, and reported higher affinities for multi-valent ions. Thermodynamic measurements provided evidence for two classes of binding sites. The higher affinity ion-binding interaction is an enthalpy driven process with an apparent stoichiometry of 2.1 ± 0.2. As revealed by Eu3+ luminescence, this binding class is homogeneous, and results in slight dehydration of the ion with one direct coordination site to the junction. Luminescence resonance energy transfer experiments confirmed the presence of two ions and indicated they are 6–7 Å apart. These findings are in good agreement with previous molecular dynamics simulations, which identified two symmetrical regions of high ion density in the center of stacked junctions. These results support a model in which site-specific binding of two ions in close proximity is required for folding of DNA Holliday junctions into the stacked-X conformation. Full article
(This article belongs to the Special Issue Förster Resonance Energy Transfer (FRET) 2015)
Show Figures

Graphical abstract

Back to TopTop