Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multiple optical parametric oscillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2158 KB  
Article
Parametric Resonance via Neuronal Microtubules: Filtering Optical Signals by Tryptophan Qubits
by Akihiro Nishiyama, Shigenori Tanaka and Jack Adam Tuszynski
Quantum Rep. 2025, 7(3), 43; https://doi.org/10.3390/quantum7030043 - 17 Sep 2025
Viewed by 2278
Abstract
This paper aims to address the possibility of parametric resonance effects in microtubules via tryptophan qubits, using the Hamiltonian of the cavity quantum electrodynamics (QED) model involving photons in a waveguide and the surrounding environment. The time evolution equations for qubits and photons [...] Read more.
This paper aims to address the possibility of parametric resonance effects in microtubules via tryptophan qubits, using the Hamiltonian of the cavity quantum electrodynamics (QED) model involving photons in a waveguide and the surrounding environment. The time evolution equations for qubits and photons are derived using the input–output formulation. Input signals with a 560 nm wavelength are amplified by Rabi oscillations for tryptophan qubits in excited states. Here, the qubits organized in multiple layers are all in excited states. When an appropriate decay to the environment occurs as internal loss, which is prepared in multiple layers, we find binary patterns of the parametric amplification of input signals and the reduction of output signals. This property might help us to understand the information processing of optical signals by filtering them with the use of tryptophan residues in microtubules and diffused nonlocal processing spreading over the whole brain in the form of holograms. Full article
(This article belongs to the Topic Quantum Systems and Their Applications)
Show Figures

Figure 1

9 pages, 4457 KB  
Article
Study on Mid-Infrared Energy Conversion of a Doubly Resonant Optical Parametric Oscillator Using Aperiodically Poled Lithium Niobate
by Zijian Wang, Bingyang Li, Yuheng Wang, Renzhe Han, Yaru Yang, Yongji Yu and Guangyong Jin
Appl. Sci. 2022, 12(3), 1739; https://doi.org/10.3390/app12031739 - 8 Feb 2022
Cited by 3 | Viewed by 2459
Abstract
This paper presents an external-cavity dual-wavelength mid-infrared multiple optical parametric oscillator based on a single MgO:APLN crystal, which is pumped by a pulsed 1.064 μm laser. The output power and beam qualities of parametric lasers at different repetition rates and transmittance were studied. [...] Read more.
This paper presents an external-cavity dual-wavelength mid-infrared multiple optical parametric oscillator based on a single MgO:APLN crystal, which is pumped by a pulsed 1.064 μm laser. The output power and beam qualities of parametric lasers at different repetition rates and transmittance were studied. When the pump power of the 1.064 μm laser was 34.5 W, the repetition rate was 63 kHz, the maximum output powers of 2.79 W@3.30 μm and 4.92 W@3.84 μm were obtained with the transmittance T = 60%@1.57 μm, corresponding to optical–optical conversion efficiencies of 8.1% and 14.3%, respectively. Meanwhile, the beam qualities of two mid-infrared laser beams were effectively optimized and the pulse widths of 9.72 ns@3.30 μm and 9.67 ns@3.84 μm were obtained synchronously. Full article
(This article belongs to the Special Issue Advances in Middle Infrared (Mid-IR) Lasers and Their Application)
Show Figures

Figure 1

Back to TopTop