Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multilayer rolling contact fatigue cracks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 51881 KB  
Article
Spatiotemporal Analysis and Characterization of Multilayer Buried Cracks in Rails Using Swept-Frequency Eddy-Current-Pulsed Thermal Tomography
by Wei Qiao, Yanghanqi Liu, Jiahao Jiao, Xiaotian Chen and Hengbo Zhang
Appl. Sci. 2025, 15(16), 9069; https://doi.org/10.3390/app15169069 - 18 Aug 2025
Cited by 1 | Viewed by 587
Abstract
Rolling contact fatigue (RCF)-induced cracks in steel rails exhibit a fish-scale-shaped cluster distribution, and generally form in a layered, overlapping manner. Eddy-current-pulsed thermography (ECPT) has been applied in RCF detection by taking advantage of electromagnetic–thermal execution; however, one still faces challenges in identifying [...] Read more.
Rolling contact fatigue (RCF)-induced cracks in steel rails exhibit a fish-scale-shaped cluster distribution, and generally form in a layered, overlapping manner. Eddy-current-pulsed thermography (ECPT) has been applied in RCF detection by taking advantage of electromagnetic–thermal execution; however, one still faces challenges in identifying and quantifying such layered, overlapping defects. This paper proposes a swept-frequency eddy-current-pulsed thermal tomography (ECPTT) detection method to quantitatively characterize multilayer crack depth and inclination angle in an artificial rail sample. In particular, stimulating frequency modulation is used to guide the induced eddy current and heat to varying depths, and this is combined with principal component analysis (PCA) to identify multilayer defects. Moreover, a thermal signal reconstruction (TSR) algorithm is introduced. TSR features are extracted for analyzing the burial depth and inclination angle of multilayer defects. The results demonstrate that the third principal component (PC3), extracted via PCA, enables layer-count discrimination in multilayer defects. Integrated with gradient magnitude analysis of the second principal component (PC2) under swept-frequency excitation, defect contour localization error can be controlled within 0.5 mm. Building on layer discrimination, multi-frequency thermal response analysis further reveals variations in PC1’s variance contribution, differentiating inclination angles of 10° and 20°, whereas comparative heating- and cooling-rate magnitudes distinguish burial depths of 0.5 mm and 1.0 mm. The research verifies that the ECPTT system can accurately detect the layer number, inclination angle, and depth of buried RCF defects, substantially enhancing the accuracy of defect contour reconstruction. Full article
(This article belongs to the Special Issue Smart Sensing Technologies in Industry Applications)
Show Figures

Figure 1

15 pages, 12453 KB  
Article
A Study on the Mechanical Characteristics and Wheel–Rail Contact Simulation of a Welded Joint for a Large Radio Telescope Azimuth Track
by Xiao Chen, Ruihua Yin, Zaitun Yang, Huiqing Lan and Qian Xu
Buildings 2024, 14(5), 1300; https://doi.org/10.3390/buildings14051300 - 5 May 2024
Cited by 2 | Viewed by 1644
Abstract
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 [...] Read more.
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 m QiTai radio telescope (QTT) studied in this paper is the world’s largest fully steerable radio telescope at present, and its track will bear the largest load ever. Since the welded joint of an azimuth track is the weakest part, an innovative welding method (multi-layer and multi-pass weld) is adopted for the thick welding section. Therefore, it is necessary to study the contact mechanical properties between the wheel and the azimuth track in this welded joint. In this study, tensile tests based on digital image correlation technology (DIC) and Vickers hardness tests are carried out in the metal zone (BM), heat-affected zone (HAZ), modified layer, and weld zone (WZ) of the welded joint, and the measured data are used to fit the elastic–plastic constitutive model for the different zones of the welded joint in the azimuth track. Based on the constitutive model established, a nonlinear finite element model is built and used to simulate the rolling mechanical performance between the wheel and azimuth track. Through the analysis of simulated data, we obtained the stress distribution of the track under different pre-designed loads and identified the locations most susceptible to damage during ordinary working conditions, braking conditions, and start-up conditions. The result can provide a significant theoretical basis for future research and for the monitoring of large track damage. Full article
Show Figures

Figure 1

Back to TopTop