Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multicycle integrated absorption–mineralization (IAM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2221 KiB  
Article
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
by Chanakarn Thamsiriprideeporn and Suekane Tetsuya
Minerals 2023, 13(4), 487; https://doi.org/10.3390/min13040487 - 30 Mar 2023
Cited by 4 | Viewed by 2378
Abstract
The present study aimed to investigate the feasibility of blended amine absorbents in improving the CO2 alkanolamine-based absorption of multicycle integrated absorption–mineralization (multicycle IAM) under standard operating conditions (20–25 °C and 1 atm). Multicycle IAM is a promising approach that transforms CO [...] Read more.
The present study aimed to investigate the feasibility of blended amine absorbents in improving the CO2 alkanolamine-based absorption of multicycle integrated absorption–mineralization (multicycle IAM) under standard operating conditions (20–25 °C and 1 atm). Multicycle IAM is a promising approach that transforms CO2 emissions into valuable products such as carbonates using amine solvents and waste brine. Previously, the use of monoethanolamine (MEA) as an absorbent had limitations in terms of CO2 conversion and absorbent degradation, which led to the exploration of blended alkanolamine absorbents, such as diethanolamine, triethanolamine, and aminomethyl propanol (AMP) combined with MEA. The blended absorbent was evaluated in terms of the absorption performance and carbonate production in continuous cycles of absorption, precipitation/regeneration, and preparation. The results showed that the fourth cycle of the blend of 15 wt.% AMP and 5 wt.% MEA achieved high CO2 absorption and conversion efficiency, with approximately 87% of the absorbed CO2 being converted into precipitated carbonates in 43 min and a slight degradation efficiency of approximately 45%. This blended absorbent can improve the efficiency of capturing and converting CO2 when compared to the use of a single MEA, which is one of the alternative options for the development of CO2 capture and utilization in the future. Full article
(This article belongs to the Special Issue Advances in Mineral Carbonation)
Show Figures

Figure 1

18 pages, 6386 KiB  
Article
Effects of Alkanolamine Absorbents in Integrated Absorption–Mineralization
by Chanakarn Thamsiriprideeporn and Suekane Tetsuya
Minerals 2022, 12(11), 1386; https://doi.org/10.3390/min12111386 - 30 Oct 2022
Cited by 1 | Viewed by 2397
Abstract
Integrated absorption–mineralization (IAM) involves the transformation of CO2 in a chemical-based solution with brine used as the absorbent to form insoluble carbonates and is promising for carbon capture, utilization, and storage. Various types of absorbents such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine [...] Read more.
Integrated absorption–mineralization (IAM) involves the transformation of CO2 in a chemical-based solution with brine used as the absorbent to form insoluble carbonates and is promising for carbon capture, utilization, and storage. Various types of absorbents such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and aminomethyl propanol (AMP) were examined in multicycle integrated absorption–mineralization (multicycle IAM) involving absorption, precipitation, and regeneration steps between 20 °C and 25 °C at atmospheric pressure in order to reveal their performance in terms of CO2 absorption and conversion and absorbent degradation. We found that 5 wt.% AMP offered 89.5% CO2 absorption capacity per unit of absorbent converted into the amount of solid carbonate within 4 cycles. In addition, it was moderately degraded by 64.02% during the first cycle and then reduced from 30% to 10% in the next cycle (>2 cycles). In comparison with MEA, which was used as the initial absorbent, AMP provided a fivefold increase in the speed of multicycle IAM. Full article
Show Figures

Figure 1

Back to TopTop